Skip to main content
Log in

Borophene-graphene heterostructure: Preparation and ultrasensitive humidity sensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterostructure has triggered a surge of interest due to its synergistic effects between two different layers, which contributes to desirable physical properties for extensive potential applications. Structurally stable borophene is becoming a promising candidate for constructing two-dimensional (2D) heterostructures, but it is rarely prepared by suitable synthesis conditions experimentally. Here, we demonstrate that a novel heterostructure composed of hydrogenated borophene and graphene can be prepared by heating the mixture of sodium borohydride and few-layered graphene followed by stepwise and in situ thermal decomposition of sodium borohydride under high-purity hydrogen as the carrier gas. The fabricated borophene-graphene heterostructure humidity sensor shows ultrahigh sensitivity, fast response, and long-time stability. The sensitivity of the fabricated borophene-based sensor is near 700 times higher than that of pristine graphene one at the relative humidity of 85% RH. The sensitivity of the sensor is highest among all the reported chemiresistive sensors based on 2D materials. Besides, the performance of the borophene-graphene flexible sensor maintains good stability after bending, which shows that the borophene-based heterostructures can be applied in wearable electronics. The observed high performance can be ascribed to the well-established charge transfer mechanism upon H2O molecule adsorption. This study further promotes the fundamental studies of interfacial effects and interactions between boron-based 2D heterostructures and chemical species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.

    Google Scholar 

  2. Mannix, A. J.; Zhang, Z. H.; Guisinger, N. P.; Yakobson, B. I.; Hersam, M. C. Borophene as a prototype for synthetic 2D materials development. Nat. Nanotechnol. 2018, 13, 444–450.

    CAS  Google Scholar 

  3. Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746–6763.

    CAS  Google Scholar 

  4. Sun, X.; Liu, X. F.; Yin, J.; Yu, J.; Li, Y.; Hang, Y.; Zhou, X. C.; Yu, M. L.; Li, J. D.; Tai, G. A. et al. Two-dimensional boron crystals: Structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 2017, 27, 1603300.

    Google Scholar 

  5. Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473–15477.

    CAS  Google Scholar 

  6. Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

    CAS  Google Scholar 

  7. Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

    CAS  Google Scholar 

  8. Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Polyphony in B flat. Nat. Chem. 2016, 8, 525–527.

    CAS  Google Scholar 

  9. Liu, L. R.; Zhang, Z. H.; Liu, X. F.; Xuan, X. Y.; Yakobson, B. I.; Hersam, M. C.; Guo, W. L. Borophene concentric superlattices via self-assembly of twin boundaries. Nano Lett. 2020, 20, 1315–1321.

    CAS  Google Scholar 

  10. Penev, E. S.; Kutana, A.; Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 2016, 16, 2522–2526.

    CAS  Google Scholar 

  11. Zhao, Y. C.; Zeng, S. M.; Ni, J. Phonon-mediated superconductivity in borophenes. Appl. Phys. Lett. 2016, 108, 242601.

    Google Scholar 

  12. Xie, S. Y.; Wang, Y. L.; Li, X. B. Flat boron: A new cousin of graphene. Adv. Mater. 2019, 31, 1900392.

    Google Scholar 

  13. Hou, C.; Tai, G. A.; Hao, J. Q.; Sheng, L. H.; Liu, B.; Wu, Z. T. Ultrastable crystalline semiconducting hydrogenated borophene. Angew. Chem., Int. Ed. 2020, 59, 10819–10825.

    CAS  Google Scholar 

  14. Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res. 2014, 47, 1349–1358.

    CAS  Google Scholar 

  15. Li, W. L.; Chen, Q.; Tian, W. J.; Bai, H.; Zhao, Y. F.; Hu, H. S.; Li, J.; Zhai, H. J.; Li, S. D.; Wang, L. S. The B35 cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene. J. Am. Chem. Soc. 2014, 136, 12257–12260.

    CAS  Google Scholar 

  16. Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427–1430.

    CAS  Google Scholar 

  17. Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163–167.

    CAS  Google Scholar 

  18. Bediako, D. K.; Rezaee, M.; Yoo, H.; Larson, D. T.; Zhao, S. Y. F.; Taniguchi, T.; Watanabe, K.; Brower-Thomas, T. L.; Kaxiras, E.; Kim, P. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 2018, 558, 425–429.

    CAS  Google Scholar 

  19. Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

    CAS  Google Scholar 

  20. Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.

    CAS  Google Scholar 

  21. Liu, Y. P.; Rodrigues, J. N. B.; Luo, Y. Z.; Li, L. J.; Carvalho, A.; Yang, M.; Laksono, E.; Lu, J. P.; Bao, Y.; Xu, H. et al. Tailoring sample-wide pseudo-magnetic fields on a graphene-black phosphorus heterostructure. Nat. Nanotechnol. 2018, 13, 828–834.

    CAS  Google Scholar 

  22. Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246–3252.

    CAS  Google Scholar 

  23. Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183–191.

    CAS  Google Scholar 

  24. Xu, H.; Han, X. Y.; Dai, X.; Liu, W.; Wu, J.; Zhu, J. T.; Kim, D. Y.; Zou, G. F.; Sablon, K. A.; Sergeev, A. et al. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photo-detectors. Adv. Mater. 2018, 30, 1706561.

    Google Scholar 

  25. Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 2019, 29, 1808306.

    Google Scholar 

  26. Guo, S. Y.; Zhang, Y. P.; Ge, Y. Q.; Zhang, S. L.; Zeng, H. B.; Zhang, H. 2D V-V binary materials: Status and challenges. Adv. Mater. 2019, 31, 1902352.

    Google Scholar 

  27. Tao, W.; Kong, N.; Ji, X. Y.; Zhang, Y. P.; Sharma, A.; Ouyang, J.; Qi, B. W.; Wang, J. Q.; Xie, N.; Kang, C. et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 2019, 48, 2891–2912.

    CAS  Google Scholar 

  28. Qiu, M.; Singh, A.; Wang, D.; Qu, J. L.; Swihart, M.; Zhang, H.; Prasad, P. N. Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. Nano Today 2019, 25, 135–155.

    CAS  Google Scholar 

  29. Liu, X. L.; Hersam, M. C. Borophene-graphene heterostructures. Sci. Adv. 2019, 5, eaax6444.

    CAS  Google Scholar 

  30. Arenal, R.; Lopez-Bezanilla, A. In situ formation of carbon nanotubes encapsulated within boron nitride nanotubes via electron irradiation. ACS Nano 2014, 8, 8419–8425.

    CAS  Google Scholar 

  31. Nishino, H.; Fujita, T.; Cuong, N. T.; Tominaka, S.; Miyauchi, M.; Iimura, S.; Hirata, A.; Umezawa, N.; Okada, S.; Nishibori, E. et al. Formation and characterization of hydrogen boride sheets derived from MgB2 by cation exchange. J. Am. Chem. Soc. 2017, 139, 13761–13769.

    CAS  Google Scholar 

  32. Kidambi, P. R.; Bayer, B. C.; Blume, R.; Wang, Z. J.; Baehtz, C.; Weatherup, R. S.; Willinger, M. G.; Schloegl, R.; Hofmann, S. Observing graphene grow: Catalyst-graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett. 2013, 13, 4769–4778.

    CAS  Google Scholar 

  33. Ennaceur, M. M.; Terreault, B. XPS study of the process of oxygen gettering by thin films of PACVD boron. J. Nucl. Mater. 2000, 280, 33–38.

    CAS  Google Scholar 

  34. Ronning, C.; Schwen, D.; Eyhusen, S.; Vetter, U.; Hofsäss, H. Ion beam synthesis of boron carbide thin films. Surf. Coat. Technol. 2002, 158–159, 382–387.

    Google Scholar 

  35. Liu, H. L.; Siregar, S.; Hasdeo, E. H.; Kumamoto, Y.; Shen, C. C.; Cheng, C. C.; Li, L. J.; Saito, R.; Kawata, S. Deep-ultraviolet Raman scattering studies of monolayer graphene thin films. Carbon 2015, 81, 807–813.

    CAS  Google Scholar 

  36. Zhou, W.; Zeng, J. W.; Li, X. F.; Xu, J.; Shi, Y.; Ren, W.; Miao, F.; Wang, B. G.; Xing, D. Y. Ultraviolet Raman spectra of double-resonant modes of graphene. Carbon 2016, 101, 235–238.

    CAS  Google Scholar 

  37. Kuang, Q.; Lao, C. S.; Wang, Z. L.; Xie, Z. X.; Zheng, L. S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070–6071.

    CAS  Google Scholar 

  38. Zhang, D. Z.; Tong, J.; Xia, B. K.; Xue, Q. Z. Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B: Chem. 2014, 203, 263–270.

    CAS  Google Scholar 

  39. Smith, A. D.; Elgammal, K.; Niklaus, F.; Delin, A.; Fischer, A. C.; Vaziri, S.; Forsberg, F.; Råsander, M.; Hugosson, H.; Bergqvist, L. et al. Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale 2015, 7, 19099–19109.

    CAS  Google Scholar 

  40. Popov, V. I.; Nikolaev, D. V.; Timofeev, V. B.; Smagulova, S. A.; Antonova, I. V. Graphene-based humidity sensors: The origin of alternating resistance change. Nanotechnology 2017, 28, 355501.

    CAS  Google Scholar 

  41. Feng, X. Y.; Chen, W. F.; Yan, L. F. Free-standing dried foam films of graphene oxide for humidity sensing. Sens. Actuators B: Chem. 2015, 215, 316–322.

    CAS  Google Scholar 

  42. Phan, D. T.; Chung, G. S. Effects of rapid thermal annealing on humidity sensor based on graphene oxide thin films. Sens. Actuators B: Chem. 2015, 220, 1050–1055.

    CAS  Google Scholar 

  43. Park, S. Y.; Kim, Y. H.; Lee, S. Y.; Sohn, W.; Lee, J. E.; Kim, D. H.; Shim, Y. S.; Kwon, K. C.; Choi, K. S.; Yoo, H. J. et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 2018, 6, 5016–5024.

    CAS  Google Scholar 

  44. Phan, D. T.; Park, I.; Park, A. R.; Park, C. M.; Jeon, K. J. Black P/graphene hybrid: A fast response humidity sensor with good reversibility and stability. Sci. Rep. 2017, 7, 10561.

    Google Scholar 

  45. Liu, B. L.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C. W. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304–5314.

    CAS  Google Scholar 

  46. Javey, A.; Kong, J. Carbon Nanotube Electronics; Springer: New York, 2009.

    Google Scholar 

  47. Shukla, V.; Wärnå, J.; Jena, N. K.; Grigoriev, A.; Ahuja, R. Toward the realization of 2D borophene based gas sensor. J. Phys. Chem. C 2017, 121, 26869–26876.

    CAS  Google Scholar 

  48. Wu, E. X.; Xie, Y.; Yuan, B.; Zhang, H.; Hu, X. D.; Liu, J.; Zhang, D. H. Ultrasensitive and fully reversible NO2 gas sensing based on p-Type MoTe2 under ultraviolet illumination. ACS Sens. 2018, 3, 1719–1726.

    CAS  Google Scholar 

  49. Jeong, H. S.; Park, M. J.; Kwon, S. H.; Joo, H. J.; Kwon, H. I. Highly sensitive and selective room-temperature NO2 gas-sensing characteristics of SnOx-based p-type thin-film transistor. Sens. Actuators B: Chem. 2019, 288, 625–633.

    CAS  Google Scholar 

  50. Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598

    CAS  Google Scholar 

  51. Wan, P. B.; Wen, X. M.; Sun, C. Z.; Chandran, B. K.; Zhang, H.; Sun, X. M.; Chen, X. D. Flexible transparent films based on nano-composite networks of polyaniline and carbon nanotubes for highperformance gas sensing. Small 2015, 11, 5409–5415.

    CAS  Google Scholar 

  52. Yang, S.; Liu, Y. L.; Chen, W.; Jin, W.; Zhou, J.; Zhang, H.; Zakharova, G. S. High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens. Actuators B: Chem. 2016, 226, 478–485.

    CAS  Google Scholar 

  53. Liu, J.; Jiang, X. T.; Zhang, R. Y.; Zhang, Y.; Wu, L. M.; Lu, W.; Li, J. Q.; Li, Y. C.; Zhang, H. MXene-enabled electrochemical microfluidic biosensor: Applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 2019, 29, 1807326.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61774085), the Natural Science Foundation of Jiangsu Province (No. BK20201300), the Six Talent Peaks Project in Jiangsu Province (No. XCL-046), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (NUAA) (No. MCMS-I-0420G02), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo’an Tai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Tai, G., Liu, B. et al. Borophene-graphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Res. 14, 2337–2344 (2021). https://doi.org/10.1007/s12274-020-3232-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3232-8

Keywords

Navigation