Skip to main content

2D/3D Material for Gas Sensor

  • Chapter
  • First Online:
Smart Nanostructure Materials and Sensor Technology

Abstract

Sensors are technological device that detects the response of the materials on exposure to sensing gas. These electronic devices are very important for personal and infrastructure safety. Various types of materials are used for the design and fabrication of the sensors. However, selecting a particular material depends upon a few parameters like low detection limit, excellent response and recovery time, high selectivity, cheap, less power consumption, operational at ambient temperature and pressure, stability in harsh environmental conditions, etc. In this chapter, first, the basic attributes of bulk and nanostructured materials and their gas-sensing mechanisms are summarized. It also discusses the latest innovation and advancements in the utilization of a variety of materials for gas sensing. Generally, bulk materials are used in the fabrication of sensors due to their key benefits such as low cost and ease to fabricate, but their response is quite slow. Therefore, nanostructure materials, particularly two-dimensional (2D) nanostructures, are promising candidates for the design and development of highly sensitive gas sensors due to their very high surface-to-volume ratio and good compatibility with most device designs. Lately, nanostructured 2D materials, such as metal oxides, graphene, metal dichalcogenides, phosphorene, BN, and M-xenes, have demonstrated significant potential for gas sensors. In this chapter, various methods for the synthesis of 2D nanostructures are briefly summarized. Emphasis is also laid on the evolution of sensing performances provided by devices that integrate 2D nanostructures and strategies for optimizing the sensing features. The experimental along with the theoretical reports are used for the correlations of the structure–properties relationship. The conclusion outlines the open challenges and future prospects for the scientific and technological advancement on 2D nanostructures for high-performance gas-sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.D. Koolen, G. Rothenberg, Air pollution in Europe. Chemsuschem 12(1), 164–172 (2019)

    Article  Google Scholar 

  2. S. Tong, Air pollution and disease burden. Lancet Planet. Health 3(2), e49–e50 (2019)

    Article  Google Scholar 

  3. P. Ranscombe, Wearable technology for air pollution. Lancet Respir. Med. 7(7), 567–568 (2019)

    Article  Google Scholar 

  4. J. Liu, Mapping high resolution national daily NO2 exposure across mainland China using an ensemble algorithm. Environ. Pollut. 279, 116932 (2021)

    Article  Google Scholar 

  5. S.S. Sinharoy, T. Clasen, R. Martorell, Air pollution and stunting: a missing link? Lancet Glob. Health 8(4), e472–e475 (2020)

    Article  Google Scholar 

  6. C. Chen, W. Li, L. Dong, X. Li, The effect of meteorological factors, seasonal factors and air pollutions on the formation of particulate matter, in IOP Conference Series: Earth and Environmental Science, vol. 450, no. 1 (IOP Publishing, 2020), p. 012012

    Google Scholar 

  7. Y. Zhang, X. Wen, Z. Wen, D. Wang, T. Hao, A. Tang, X. Liu, Atmospheric deposition of inorganic nitrogen in a semi-arid grassland of Inner Mongolia, China. J. Arid. Land 9(6), 810–822 (2017)

    Article  Google Scholar 

  8. D.R. Widiana, Y.-F. Wang, S.-J. You, H.-H. Yang, L.-C. Wang, J.-H. Tsai, H.-M. Chen, Air pollution profiles and health risk assessment of ambient volatile organic compounds above a municipal wastewater treatment plant, Taiwan. Aerosol Air Qual. Res. 19(2), 375–382 (2019)

    Google Scholar 

  9. S. Naseem, A.J. King, Ammonia production in poultry houses can affect health of humans, birds, and the environment-techniques for its reduction during poultry production. Environ. Sci. Pollut. Res. 25(16), 15269–15293 (2018)

    Article  Google Scholar 

  10. National Research Council, Acute exposure guideline levels for selected airborne chemicals: Vol. 3, (2003)

    Google Scholar 

  11. P. Vyas, K. Thakur, Classification and characteristics of sensors. Adv. Modern Sens. 2–1 (2020)

    Google Scholar 

  12. P.K. Kulriya, M. Kumar, J. Singh, D.K. Avasthi, Hydrogen pressure dependent in-situ electrical studies on Pd/C nano-composite. Int. J. Hydrogen Energy 42(5), 3399–3406 (2017)

    Google Scholar 

  13. V. Singh, B.R. Mehta, S.K. Sengar, P.K. Kulriya, S.A. Khan, S.M. Shivaprasad, Enhanced hydrogenation properties of size selected Pd–C core–shell nanoparticles; effect of carbon shell thickness. J. Phys. Chem. C 119(25), 14455–14460 (2015)

    Article  Google Scholar 

  14. E. Bakker, M. Telting-Diaz, Electrochemical sensors. Anal. Chem. 74(12), 2781–2800 (2002)

    Article  Google Scholar 

  15. C.-H. Han, D.-W. Hong, S.-D. Han, J. Gwak, K.C. Singh, Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED. Sens. Actuators, B Chem. 125(1), 224–228 (2007)

    Article  Google Scholar 

  16. D. Rossberg, Optical properties of the integrated infrared sensor. Sens. Actuators, A 54(1–3), 793–797 (1996)

    Article  Google Scholar 

  17. R. Flooding, Identification of sub resolution high temperature sources using a thermal IR sensor. Photogram. Eng. Remote Sens 9 (1981)

    Google Scholar 

  18. G. Korotcenkov, Handbook of gas sensor materials. Conventional Approaches 1 (2013)

    Google Scholar 

  19. L. Ge, X. Mu, G. Tian, Q. Huang, J. Ahmed, Z. Hu, Current applications of gas sensor based on 2-D nanomaterial: a mini review. Front. Chem. 839 (2019)

    Google Scholar 

  20. J. Cervera Gómez, J. Pelegri-Sebastia, R. Lajara, Circuit topologies for MOS-type gas sensor. Electronics 9(3), 525 (2020)

    Google Scholar 

  21. S. Yang, C. Jiang, S.-H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4(2), 021304 (2017)

    Article  ADS  Google Scholar 

  22. Q. Dong, M. Xiao, Z. Chu, G. Li, Y. Zhang, Recent progress of toxic gas sensors based on 3d graphene frameworks. Sensors 21(10), 3386 (2021)

    Article  ADS  Google Scholar 

  23. S. Ranwa, P.K. Kulriya, V.K. Sahu, L.M. Kukreja, M. Kumar, Defect-free ZnO nanorods for low temperature hydrogen sensor applications. Appl. Phys. Lett. 105(21), 213103 (2014)

    Google Scholar 

  24. S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathan, A. Abdala, Recent advances in graphene based gas sensors. Sens. Actuators, B Chem. 218,160–183 (2015)

    Google Scholar 

  25. C. Yu, Q. Liu, Z. He, X. Gao, W. Enxiu, J. Guo, C. Zhou, Z. Feng, Epitaxial graphene gas sensors on SiC substrate with high sensitivity. J. Semicond. 41(3), 032101 (2020)

    Article  ADS  Google Scholar 

  26. X. Li, X. Li, Z. Li, J. Wang, J. Zhang, WS2 nanoflakes based selective ammonia sensors at room temperature. Sens. Actuators, B Chem. 240, 273–277 (2017)

    Article  Google Scholar 

  27. D. Gu, X. Li, H. Wang, M. Li, Y. Xi, Y. Chen, J. Wang, M.N. Rumyntseva, A.M. Gaskov, Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators. Sens. Actuators, B Chem. 256, 992–1000 (2018)

    Article  Google Scholar 

  28. D.J. Late, T. Doneux, M. Bougouma, Single-layer MoSe2 based NH3 gas sensor. Appl. Phys. Lett. 105(23), 233103 (2014)

    Article  ADS  Google Scholar 

  29. , S. Singh, S. Sharma, R.C. Singh, S. Sharma, Hydrothermally synthesized MoS2-multi-walled carbon nanotube composite as a novel room-temperature ammonia sensing platform. Appl. Surface Sci. 532, 147373 (2020)

    Google Scholar 

  30. B. Cho, J. Yoon, S.K. Lim, A.R. Kim, D.-H. Kim, S.-G. Park, J.-D. Kwon, et al., Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 7(30), 16775–16780 (2015)

    Google Scholar 

  31. K. Lee, R. Gatensby, N. McEvoy, T. Hallam, G.S. Duesberg, High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25(46), 6699–6702 (2013)

    Article  Google Scholar 

  32. D.J. Late, Y.-K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS nano 7(6), 4879–4891 (2013)

    Google Scholar 

  33. J. Wu, K. Tao, Y. Guo, Z. Li, X. Wang, Z. Luo, S. Feng, et al., A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Adv. Sci. 4(3), 1600319 (2017)

    Google Scholar 

  34. L. Li, S. He, M. Liu, C. Zhang, W. Chen, Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal. Chem. 87(3), 1638–1645 (2015)

    Article  Google Scholar 

  35. J. Wu, W. Zixuan, H. Ding, Y. Wei, W. Huang, X. Yang, Z. Li, L. Qiu, X. Wang, Three-dimensional graphene hydrogel decorated with SnO2 for high-performance NO2 sensing with enhanced immunity to humidity. ACS Appl. Mater. Interfaces. 12(2), 2634–2643 (2020)

    Article  Google Scholar 

  36. C. Tyagi, P.K. Kulriya, S. Ojha, D.K. Avasthi, A. Tripathi, Investigation of graphene oxide-hydrogen interaction using in-situ X-ray diffraction studies. Int. J. Hydrogen Energy 43(29), 13339–13347 (2018)

    Google Scholar 

  37. F.-L. Meng, Z. Guo, X.-J. Huang, Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends Anal. Chem. 68, 37–47 (2015)

    Article  Google Scholar 

  38. S. Singh, J. Deb, U. Sarkar, S. Sharma, MoS2/WO3 nanosheets for detection of ammonia. ACS Appl. Nano Mater. 4(3), 2594–2605 (2021)

    Article  Google Scholar 

  39. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments. J. Hazard. Mater. 160(2–3), 265–288 (2008)

    Article  Google Scholar 

  40. J. Gao, M. Liu, H. Song, S. Zhang, Y. Qian, A. Li, Highly-sensitive electrocatalytic determination for toxic phenols based on coupled cMWCNT/cyclodextrin edge-functionalized graphene composite. J. Hazard. Mater. 318, 99–108 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors Ankita Rawat is thankful to CSIR for awarding Junior Research Fellowship with file no. 09/263(1233)/2020-EMR-l.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Kulriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, A., Kulriya, P.K. (2022). 2D/3D Material for Gas Sensor. In: Sonker, R.K., Singh, K., Sonkawade, R. (eds) Smart Nanostructure Materials and Sensor Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2685-3_8

Download citation

Publish with us

Policies and ethics