Skip to main content
Log in

Control of Elevated Ion Accumulation, Oxidative Stress, and Lipid Peroxidation with Salicylic Acid-Induced Accumulation of Glycine Betaine in Salinity-Exposed Vigna radiata L

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The identification of the sustainable approaches is required for the minimization of adverse impact of worldwide increasing soil salinity on plant growth, development, and productivity. This study investigated the protective role and major mechanism underlying salicylic acid (SA; 0.1, 0.5, or 1.0 mM)-induced glycine betaine (GB)-mediated tolerance to salinity (50 mM NaCl) in mungbean (Vigna radiata L. cultivar Punt Mung). The supply of 0.5 mM SA maximally increased the accumulation of GB (>40%) with respect to the control. This was further corroborated with the increase in water potential, antioxidant system (reduced glutathione (GSH), GSH/GSSG redox state, and glutathione reductase (GR) activity) and decreased Na+ and Cl accumulation, Na+/K+ ratio, oxidative stress, and lipid peroxidation. This was also associated with the increased photosynthesis (14–18%) and growth (7–12%) parameters. Overall, SA-induced accumulation of GB protected photosynthesis and growth against 50 mM NaCl-accrued impacts in V. radiata through minimizing the accumulation of Na+ and Cl ions, oxidative stress, and maintaining high GSH level that led to reduced cellular redox environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Model 1

Similar content being viewed by others

References

  1. Nazar, R., Iqbal, N., Masood, A., Syeed, S., & Khan, N. A. (2011). Understanding the significance of sulfur in improving salinity tolerance in plants. Environmental and Experimental Botany, 70(2–3), 80–87.

  2. Fatma, M., Masood, A., Per, T. S., & Khan, N. A. (2016). Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Frontiers in Plant Science, 7, 52.

    Article  Google Scholar 

  3. Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3–16.

    Article  CAS  Google Scholar 

  4. Wang, W. B., Kim, Y. H., Lee, H. S., Kim, K., & Kwask, S. S. (2009). Analysis of antioxidant enzymes activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47(7), 570–577.

    Article  CAS  PubMed  Google Scholar 

  5. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.

    Article  CAS  PubMed  Google Scholar 

  6. Khan, N. A., Nazar, R., & Anjum, N. A. (2009). Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Scientia Horticulturae, 122(3), 455–460.

    Article  CAS  Google Scholar 

  7. Fatma, M., & Khan, N. A. (2014). Nitric oxide protects photosynthetic capacity inhibition by salinity in Indian mustard. Journal of Functional and Environmental Botany, 4(2), 106–116.

    Article  Google Scholar 

  8. Asgher, M., Per, T. S., Masood, A., Fatma, M., Freschi, L., Corpas, F. J., & Khan, N. A. (2017). Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environmental Science and Pollution Research, 24(3), 2273–2285.

    Article  CAS  PubMed  Google Scholar 

  9. Gunes, A., Alpaslan, A. I. M., Eraslan, G., Bagci, F. E., & Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164(6), 728–736.

    Article  CAS  PubMed  Google Scholar 

  10. Nazar, R., Iqbal, N., Syeed, S., & Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168(8), 807–815.

    Article  CAS  PubMed  Google Scholar 

  11. Arfan, M., Athar, H. R., & Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress. Journal of Plant Physiology, 164(6), 685–694.

    Article  CAS  PubMed  Google Scholar 

  12. Syeed, S., Anjum, N. A., Nazar, R., Iqbal, N., Masood, A., & Khan, N. A. (2011). Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiologiae Plantarum, 33(3), 877–886.

    Article  CAS  Google Scholar 

  13. Yang, W. J., Rich, P. J., Axtell, J. D., Wood, K. V., Bonham, C. C., Ejeta, G., & Rhodes, D. (2003). Genotypic variation for glycine betaine in sorghum. Crop Science, 43(1), 162–169.

    Article  CAS  Google Scholar 

  14. Park, E. J., Jeknić, Z., Pino, M. T., Murata, N., & Chen, T. H. H. (2007). Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant, Cell & Environment, 30(8), 994–1005.

    Article  CAS  Google Scholar 

  15. Chen, T. H., & Murata, N. (2008). Glycinebetaine: An effective protectant against abiotic stress in plants. Trends in Plant Science, 13(9), 499–505.

    Article  CAS  PubMed  Google Scholar 

  16. Ashraf, M., & Foolad, M. R. (2007). Roles of glycinebetaine and proline in improving plant abiotic stress tolerance. Environmental and Experimental Botany, 59(2), 206–216.

    Article  CAS  Google Scholar 

  17. Hoque, M. A., Banu, M. N. A., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2008). Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of Plant Physiology, 165(8), 813–824.

    Article  CAS  PubMed  Google Scholar 

  18. Islam, M. M., Hoque, M. A., Okuma, E., Banu, M. N. A., Shimoishi, Y., & Nakamura, Y. (2009). Exogenous proline and glycine betaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 166(15), 1587–1597.

    Article  CAS  PubMed  Google Scholar 

  19. Hossain, M. A., & Fujita, M. (2010). Evidence for a role of exogenous glycine betaine and proline in antioxidant defense and methyl glyoxal detoxification systems in mung bean seedlings under salt stress. Physiology and Molecular Biology of Plants, 16(1), 19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murmu, K., Murmu, S., Kundu, C. K., & Bera, P. S. (2017). Exogenous proline and glycine betaine in plants under stress tolerance. International Journal of Current Microbiology and Applied Sciences, 6(9), 901–913.

    Article  CAS  Google Scholar 

  21. Hussain, S. J., Masood, A., Anjum, N. A., & Khan, N. A. (2019). Sulfur-mediated control of salinity impact on photosynthesis and growth in mungbean cultivars screened for salt tolerance involves glutathione and proline metabolism, and glucose sensitivity. Acta Physiologiae Plantarum, 41, 129.

  22. Williams, M., Senaratna, T., Dixon, K., & Sivasithamparam, K. (2003). Benzoic acid induces tolerance to biotic stress caused by Phytophthora cinnamomi in Banksai attenuate. Plant Growth Regulation, 41(1), 89–91.

    Article  CAS  Google Scholar 

  23. Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70(2), 303–307.

    Article  CAS  Google Scholar 

  24. Okuda, T., Masuda, Y., Yamanka, A., & Sagisaka, S. (1991). Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiology, 97(3), 265–1267.

    Article  Google Scholar 

  25. Dhindsa, R. H., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT. Journal of Experimental Botany, 32(1), 93–101.

    Article  CAS  Google Scholar 

  26. Foyer, C. H., & Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplast: A proposed role in ascorbic acid metabolism. Planta, 133(1), 21–25.

    Article  CAS  PubMed  Google Scholar 

  27. Griffith, O. W. (1980). Determination of glutathione disulphide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 106(1), 207–212.

    Article  CAS  PubMed  Google Scholar 

  28. Khan, M. I. R., Iqbal, N., Masood, A., & Khan, N. A. (2012). Variation in salt tolerance of wheat cultivars: Role of glycinebetaine and ethylene. Pedosphere, 22(6), 746–754.

    Article  CAS  Google Scholar 

  29. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hiscox, T. D. & and Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissues without maceration. Canadian Journal of Botany, 57, 1332-1334, 12.

  31. Wutipraditkul, N., Wongwean, P., & Buaboocha, T. (2015). Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycinebetaine. Biologia Plantarum, 599(3), 547–553.

    Article  CAS  Google Scholar 

  32. Shabala, S., & Munns, R. (2017). Salinity stress: Physiological constraints and adaptive mechanisms. Plant stress physiology, 1(1), 24–63.

    Article  Google Scholar 

  33. Iseki, K., Marubodee, R., Ehara, H., & Tomooka, N. (2017). A rapid quantification method for tissue Na+ and K+ concentrations in salt-tolerant and susceptible accessions in Vigna vexillata (L.). A. Rich. Plant Production Science, 20(1), 144–148.

    Article  CAS  Google Scholar 

  34. Siefermann-Harms, D. (1987). The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiologia Plantarum, 69(3), 561–568.

    Article  CAS  Google Scholar 

  35. Li, T., Hu, Y., Du, X., Tang, H., Shen, C. & Wu, J. (2014). Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLOS One, 9(10), 109492.

  36. Hussain, S. J., Khan, N. A., Anjum, N. A., Masood, A., & Khan, M. I. R. (2020). Mechanistic elucidation of salicylic acid and sulphur-induced defence systems, nitrogen metabolism, photosynthetic, and growth potential of mungbean (Vigna radiata) under salt stress. Journal of Plant Growth Regulation, 40, 1000–1016.

  37. Khan, M. I. R., Asgher, M., & Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80, 67–74.

    Article  CAS  PubMed  Google Scholar 

  38. Hamid, M., & Khalil-ur-Rehman, & Ashraf, M. Y. (2010). Salicylic acid–induced growth and biochemical changes in salt-stressed wheat. Communications in Soil Science and Plant Analysis, 41(4), 373–389.

    Article  CAS  Google Scholar 

  39. Athar, H. U. R., Zafar, Z. U., & Ashraf, M. (2015). Glycinebetaine improved photosynthesis in canola under salt stress: Evaluation of chlorophyll fluorescence parameters as potential indicators. Journal of Agronomy and Crop Science, 201(6), 428–442.

    Article  CAS  Google Scholar 

  40. Malekzadeh, P. (2015). Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). Physiology and Molecular biology of Plants, 21(2), 225–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rahman, M. S., Miyake, H., & Takeoka, Y. (2002). Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Production Science, 5(1), 33–44.

    Article  CAS  Google Scholar 

  42. Jagendorf, A. T., & Takabe, T. (2001). Inducers of glycinebetaine synthesis in barley. Plant Physiology, 127(4), 1827–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lutts, S., Majerus, V., & Kinet, J. M. (1999). NaCl effects on proline metabolism in rice (Oryza sativa L.) seedlings. Physiologia Plantarum, 105(3), 450–458.

    Article  CAS  Google Scholar 

  44. Shen, Y. G., Du, B. X., Zhang, W. K., Zhang, J. S., & Chen, S. Y. (2002). AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theoretical and Applied Genetics, 105(6-7), 815–821.

    Article  CAS  PubMed  Google Scholar 

  45. Misra, N., & Saxena, P. (2009). Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science, 177(3), 181–189.

    Article  CAS  Google Scholar 

  46. Abdelaal, K. A., Hafez, Y. M., El-Afry, M. M., Tantawy, D. S., & Alshaal, T. (2018). Effect of some osmoregulators on photosynthesis, lipid peroxidation, antioxidative capacity, and productivity of barley (Hordeum vulgare L.) under water deficit stress. Environmental Science and Pollution Research, 25(30), 30199–30211.

    Article  CAS  PubMed  Google Scholar 

  47. Anjum, N. A., Sofo, A., Scopa, A., Roychoudhury, A., Gill, S. S., Iqbal, M., Lukatkin, A. S., Pereira, E., Duarte, A. C., & Ahmad, I. (2015). Lipids and proteins - Major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research, 22(6), 4099–4121.

    Article  CAS  PubMed  Google Scholar 

  48. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681.

    Article  CAS  PubMed  Google Scholar 

  49. Yang, Z., Yu, J., Merewitz, E., & Huang, B. (2012). Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species. Journal of the American Society for Horticultural Science, 137(2), 96–106.

    Article  CAS  Google Scholar 

  50. Rameeh, V., Gerami, M., Omran, V. G., & Ghavampour, S. (2017). Impact of glycine betaine on salinity tolerance of stevia (Stevia rebaudiana Bertoni) under in vitro condition. Cercetari Agronomice in Moldova, 50(3), 95–105.

    Article  Google Scholar 

  51. Youssef, S. M., Elhady, S. A. A., Aref, R. M., & Riad, G. S. (2018). Salicylic acid attenuates the adverse effects of salinity on growth and yield and enhances peroxidase isozymes expression more competently than proline and glycine betaine in cucumber plants. Gesunde Pflanzen, 70(2), 75–90.

    Article  CAS  Google Scholar 

  52. Lawson, T., & Vialet-Chabrand, S. (2019). Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist, 221(1), 93–98.

    Article  PubMed  Google Scholar 

  53. Hamani, A. K. M., Li, S., Chen, J., Amin, A. S., Wang, G., Xiaojun, S., Zain, M., & Gao, Y. (2021). Linking exogenous foliar application of glycine betaine and stomatal characteristics with salinity stress tolerance in cotton (Gossypium hirsutum L.) seedlings. BMC Plant Biology 21, 146.

  54. Chatrath, A., Mandal, P., & Anuradha, M. (2000). Effect of secondary salinization on photosynthesis in fodder oat (Avena sativa L.) genotypes. Journal of Agronomy and Crop Science, 184(1), 13–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author (AM) acknowledges the Department of Science and Technology, Government of India, New Delhi for the grant SERB.LS-184/2014.

Author information

Authors and Affiliations

Authors

Contributions

Asim Masood: experimentation, methodology, writing original draft; Zebus Sehar: experimentation, data analyses; Naser Anjum: formal analysis, computational work; Shabina Syeed: data analyses, methodology; Nafees Khan: supervision, conceptualization.

Corresponding authors

Correspondence to Asim Masood or Nafees A. Khan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Authors agreed to participate in this research.

Consent for Publication

All the authors have approved the last version of the manuscript for its submission/publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shabina Syeed, Zebus Sehar, and Asim Masood share first authorship.

Supplementary Information

ESM 1

(PDF 1081 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syeed, S., Sehar, Z., Masood, A. et al. Control of Elevated Ion Accumulation, Oxidative Stress, and Lipid Peroxidation with Salicylic Acid-Induced Accumulation of Glycine Betaine in Salinity-Exposed Vigna radiata L. Appl Biochem Biotechnol 193, 3301–3320 (2021). https://doi.org/10.1007/s12010-021-03595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03595-9

Keywords

Navigation