Skip to main content
Log in

Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

In mung bean seedlings, salt stress (300 mM NaCl) caused a significant increase in reduced glutathione (GSH) content within 24 h of treatment as compared to control whereas a slight increase was observed after 48 h of treatment. Highest oxidized glutathione (GSSG) content was observed after 48 h to treatment with a concomitant decrease in glutathione redox state. Glutathione peroxidase, glutathione S-transferase, and glyoxalase II enzyme activities were significantly elevated up to 48 h, whereas glutathione reductase and glyoxalase I activities were increased only up to 24 h and then gradually decreased. Application of 15 mM proline or 15 mM glycinebetaine resulted in an increase in GSH content, maintenance of a high glutathione redox state and higher activities of glutathione peroxidase, glutathione S-transferase, glutathione reductase, glyoxalase I and glyoxalase II enzymes involved in the ROS and methylglyoxal (MG) detoxification system for up to 48 h, compared to those of the control and mostly also salt stressed plants, with a simultaneous decrease in GSSG content, H2O2 and lipid peroxidation level. The present study suggests that both proline and glycinebetaine provide a protective action against saltinduced oxidative damage by reducing H2O2 and lipid peroxidation level and by enhancing antioxidant defense and MG detoxification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDNB-1:

Chloro-2,4-dinitrobenzene

DTNB:

5,5[-dithio-bis (2-nitrobenzoic acid)

EDTA:

ethylene diamine tetraacetic acid

Gly I:

glyoxalase I

Gly II:

Glyoxalase II

GR:

glutathione reductase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

GPX:

glutathione peroxidase

GST:

glutathione S-transferase

MDA:

malondialdehyde

MG:

methylglyoxal

NTB:

2-nitro-5-thiobenzoic acid

ROS:

Reactive oxygen species; SLG

S-D:

lactoylglutathione

TBA:

thiobarbituric acid

TCA:

trichloroactic acid

References

  • Alscher RG (1989). Biosynthesis and antioxidant function of glutathione in plants. Physiol. Plant. 77: 457–467.

    Article  CAS  Google Scholar 

  • Apel K and Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 55: 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Aravind PA and Prasad NV (2005). Modulation of cadmiuminduced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol. Biochem. 45: 107–116.

    Article  CAS  Google Scholar 

  • Ashraf M and Foolad MR (2007). Roles of glycinebetaine and proline in improving plant abiotic resistance. Environ. Exp. Bot. 59: 206–16.

    Article  CAS  Google Scholar 

  • Banu MNA, Hoque MA, Watanble-Sugimoto M, Masuoka K, Nakamura Y and Shimoishi Y (2009). Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J. Plant Physiol. 166: 146–156.

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ and Jensen RG (1996). Metabolic engineering for increasing salt tolerance-the next step: comment. Aus. J. Plant Physiol. 23: 661–666.

    Article  Google Scholar 

  • Booth J, Boyland E and Sims P (1961). An enzyme from rat liver catalyzing conjugation. Biochem. J. 79: 516–524.

    CAS  PubMed  Google Scholar 

  • Bor M, Ozdemir F and Turkan I (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugerbeet Beta maritime L. Plant Sci. 164: 77–84.

    Article  CAS  Google Scholar 

  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brigelius-Flohe R and Flohe L (2003). Is there a role of glutathione peroxidases in signaling and differentiation? Biofactors 17: 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Strbac D and Marschner H (1993). Activities of hydrogenperoxide scavenging enzymes in germinating wheat seeds. J. Exp. Bot. 44: 127–132.

    Article  CAS  Google Scholar 

  • Chattopadhayay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN and Ghosh B (2002). Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol. Plant. 116: 192–199.

    Article  CAS  PubMed  Google Scholar 

  • Chen WP, Li PH and Chen THH (2000). Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ. 23: 609–618.

    Article  CAS  Google Scholar 

  • Demiral T and Türkan I (2004). Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J. Plant Physiol. 161: 1089–1100.

    Article  CAS  PubMed  Google Scholar 

  • Deswal R, Chakravarty TN and Sopory SK (1993). The glyoxalase system in higher plants: regulation in growth and differentiation. Biochem. Soc. Trans. 21: 527–530.

    CAS  PubMed  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dorr AJM and Manitilacci L (2003). Antioxidant responses and bioaccumulation in Latalurus melas under mercury exposure. Ecotoxicol. Environ. Saf. 55: 162–7.

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH and Noctor G (1999). Leaves in the dark see the light. Science 284: 599–601.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton III EW and Heckathorn SA (2001). Mitochondrial adaptation to NaCl. Complex I is protected by antioxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126: 1266–1274.

    Article  CAS  PubMed  Google Scholar 

  • Health RL and Packer L (1968). Photoperoxidation in isolated chloroplast.I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189–198.

    Article  Google Scholar 

  • Hernandez JA, Corpas FJ, Gomez M, del Rio LA and Sevilla F (1993). Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol. Plant. 89: 103–110.

    Article  CAS  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Barceló AR and Sevilla F (2001). Antioxidant systems and O 2 / H2O2 production in the apoplast of pea leaves. Its relation with saltinduced necrotic lesions in minor veins. Plant Physiol. 127: 817–831.

    Article  PubMed  Google Scholar 

  • Heuer B (2003). Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci. 165: 693–699.

    Article  CAS  Google Scholar 

  • Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y and Murata Y (2007a). Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J. Plant Physiol. 164: 553–561.

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA, Banu MNA, Okuma E, Amako K, Nakamura Y, Shimoishi Y and Murata Y (2007b). Exogenous proline and glycinebetaine ingresses NaCl-induced ascorbateglutathione cycle enzyme activities and proline improves salt tolerance more than glycinebetaine in tobacco Bright yellow-2 suspension-cultured cells. J. Plant Physiol. 164: 553–561.

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA and Fujita M (2009) Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci. Biotchnol. Biochem. 73(9): 2007–2013.

    Article  CAS  Google Scholar 

  • Hossain MA, Hossain MZ and Fujita M (2009). Stressinduced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aus. J. Crop Sci. 3: 53–64.

    CAS  Google Scholar 

  • Jain M, Choudhary D, Kale RK and Sarin NB (2002). Saltand glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). Physiol. Plant. 114: 499–505.

    Article  CAS  PubMed  Google Scholar 

  • Khedr AHA, Abbas MA, Wahid AAA, Quick WP and Abogadallah GM (2003). Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J. Exp. Bot. 54: 2553–2562.

    Article  CAS  PubMed  Google Scholar 

  • Kumar V and Yadav SK (2009). Proline and betaine provide protection to antioxidant and methyglyxoal detoxification systems during cold stress and Camellia sinensis (L.) O.Kuntze. Acta Physiol. Plant. 31: 261–269.

    Article  CAS  Google Scholar 

  • Ma QQ, Wang W, Li YH, Li DQ and Zou Q (2006). Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J. Plant Physiol. 163: 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Madamanchi NJ, Anderson J, Hatzois K and Cramer C (1994). Acquired resistance to herbicides in pea cultivars by exposure of sulfur dioxide. Pest Boichem. Physiol. 48: 31–40.

    Article  CAS  Google Scholar 

  • May MJ and Leaver CJ (1993). Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol. 103: 621–627.

    CAS  PubMed  Google Scholar 

  • Mittler R (2002). Oxidative stress, antioxidant and stress tolerance. Trends Plant Sci. 7: 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M and Guy M (2003a). Upregulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ. 26: 845–856.

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Theodoulou FL, Kiddle G, Gomez L, Volokita M and Tal M (2003b). Co-ordinate induction of glutathione biosynthesis and glutathione metabolizing enzymes is correlated with salt tolerance. FEBS Lett. 554: 417–421.

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002). Comparative physiology of salt and water stress. Plant Cell Env. 25: 239–250.

    Article  CAS  Google Scholar 

  • Munns R (2005). Genes and salt tolerance: bringing them together. New Phytol. 167: 645–663.

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä P, Kärkkäinen J and Somersalo S (2000). Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biol. Plant. 43: 471–475.

    Article  Google Scholar 

  • Noctor G and Foyer CH (1998). Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol.Plant Mol. Biol. 49: 249–279.

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Gomez L, Vanaker H and Foyer CH (2002). Interactions between biosynthesis, compartmetnation and transport in the control of glutathione homeostasis and signaling. J. Exp. Bot. 53: 1283–1304.

    Article  CAS  PubMed  Google Scholar 

  • Okuma E, Murakami Y, Shimoishi Y, Tada M and Murata Y (2004). Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Sci. Plant Nutr. 50: 301–1305.

    Google Scholar 

  • Okuma E, Soeda K, Fukuda M, Tada M, Murata Y (2002). Negative correlation between the ratio of K+ to Na+ and proline accumulation in tobacco suspension cells. Soil Sci Plant Nutr. 48: 753–757.

    CAS  Google Scholar 

  • Park EJ, Jeknic Z and Chen THH (2006). Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol. 47: 706–714.

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P and Guisez Y (2004). Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol. 134: 1479–1487.

    Article  CAS  PubMed  Google Scholar 

  • Principato GB, Rosi G, Talesa V, Govannini E and Uolila L (1987). Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats. Biochem. Biophys. Acta. 911: 349–355.

    CAS  PubMed  Google Scholar 

  • Roxas VP, Smith RK, Ellen ER and Allen RD (1997). Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Plant Cell Physiol. 41: 1229–1234.

    Article  Google Scholar 

  • Ruiz JM and Blumwald E (2002). Salinity-induced glutathione synthesis in Brassica napus. Planta 214: 965–969.

    Article  CAS  PubMed  Google Scholar 

  • Saxena M, Bisht R, Roy DS, Sopory SK and Bhalla-Sarinn M (2005). Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn and ABA. Biochem. Biophys. Res. Commun. 336: 813–819.

    Article  CAS  PubMed  Google Scholar 

  • Seckin B, Sekmen AH and Tukan I (2009). An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J. Plant Growth Regul. 28: 12–20.

    Article  CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy Ma and Tal M (2001). Response of the cultivated tomato and its wild salttolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol. Plant. 112: 487–494.

    Article  CAS  PubMed  Google Scholar 

  • Sheokand S, Kumari A and Sawhney V (2008). Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plant. Physiol. Mol. Biol. Plants. 14: 355–362.

    Article  CAS  Google Scholar 

  • Singla-Pareek SL, Ray M, Reddy MK and Sopory SK (2003). Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc. Natl. Acad. Sci. USA. 100: 14672–14677.

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006). Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol. 140: 613–623

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (2005). Antioxidant and reactive oxygen species in plants. Oxford-Blackwell-Publishing.

  • Sumithra K, Jutur PP, Carmel BD and Reddy AR (2006). Salinity-induced changes in two cultivars of vigna rediata: responses of antioxidative and proline metabolism. Plant Growth Regul. 50: 11–22.

    Article  CAS  Google Scholar 

  • Tanou G, Molassiotis A and Diamantidis G (2009). Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Env. Exp. Bot. 65: 270–281.

    Article  CAS  Google Scholar 

  • Thornalley PJ (1990). The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem. J. 269: 1–11.

    CAS  PubMed  Google Scholar 

  • Veena, Reddy VS and Sopory SK (1999). Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J. 17: 385–395.

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK and Sopory SK (2005a). Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem. Biophys. Res. Commun. 337: 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK and Sopory SK (2005b). Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett. 579: 6265–6271.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H and Miyasaki H (2004). Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamyodmonas glutathione peroxidase in chloroplast or cytocol. Plant J. 37: 21–33.

    Article  CAS  PubMed  Google Scholar 

  • Yu CW, Murphy TM and Lin CH (2003). Hydrogen peroxideinduces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct. Plant Biol. 30: 955–963.

    Article  CAS  Google Scholar 

  • Yu CW, Murphy TM, Sung WW and Lin CH (2002). H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean. Funct. Plant. Biol. 29: 1081–1087.

    Article  CAS  Google Scholar 

  • Zhang J Kirkham MB (1996). Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants. Plant Sci. 113: 139–147.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Fujita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M.A., Fujita, M. Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Plants 16, 19–29 (2010). https://doi.org/10.1007/s12298-010-0003-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-010-0003-0

Keywords

Navigation