Skip to main content

Advertisement

Log in

Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Stress factors provoke enhanced production of reactive oxygen species (ROS) in plants. ROS that escape antioxidant-mediated scavenging/detoxification react with biomolecules such as cellular lipids and proteins and cause irreversible damage to the structure of these molecules, initiate their oxidation, and subsequently inactivate key cellular functions. The lipid- and protein-oxidation products are considered as the significant oxidative stress biomarkers in stressed plants. Also, there exists an abundance of information on the abiotic stress-mediated elevations in the generation of ROS, and the modulation of lipid and protein oxidation in abiotic stressed plants. However, the available literature reflects a wide information gap on the mechanisms underlying lipid- and protein-oxidation processes, major techniques for the determination of lipid- and protein-oxidation products, and on critical cross-talks among these aspects. Based on recent reports, this article (a) introduces ROS and highlights their relationship with abiotic stress-caused consequences in crop plants, (b) examines critically the various physiological/biochemical aspects of oxidative damage to lipids (membrane lipids) and proteins in stressed crop plants, (c) summarizes the principles of current technologies used to evaluate the extent of lipid and protein oxidation, (d) synthesizes major outcomes of studies on lipid and protein oxidation in plants under abiotic stress, and finally, (e) considers a brief cross-talk on the ROS-accrued lipid and protein oxidation, pointing to the aspects unexplored so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achary VMM, Patnaik AR, Panda BB (2012) Oxidative biomarkers in leaf tissue of barley seedlings in response to aluminum stress. Ecotoxicol Environ Saf 75:16–26

    CAS  Google Scholar 

  • Aftab T, Khan M, Naeem M, Idrees M, Teixeira da Silva JA, Ram M (2012) Exogenous nitric oxide donor protects Artemisia annua from oxidative stress generated by boron and aluminium toxicity. Ecotoxicol Environ Saf 80:60–68

    CAS  Google Scholar 

  • Ahmad P, Jaleel C, Sharma S (2010) Antioxidant defense system, lipid peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russ J Plant Physiol 57:509–517

    CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. and Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Akbulut M, Çakır S (2010) The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem 48:160–166

    CAS  Google Scholar 

  • Alméras E, Stolz S, Vollenweider S, Reymond P, Mène-Saffrane L, Farmer EE (2003) Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J 34:205–216

    Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M, Khan NA (2008a) Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regul 54:271–279

    CAS  Google Scholar 

  • Anjum NA, Umar S, Iqbal M, Khan NA (2008b) Growth characteristics and antioxidant metabolism of moongbean genotypes differing in photosynthetic capacity subjected to water deficit stress. J Plant Interact 3:127–136

    CAS  Google Scholar 

  • Anjum NA, Umar S, Iqbal M, Khan NA (2011) Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate–glutathione cycle metabolism. Russ J Plant Physiol 58:92–99

    CAS  Google Scholar 

  • Anjum NA, Umar S, Ahmad A (2012) Oxidative stress in plants: causes, consequences and tolerance. IK International Publishing House, New Delhi

    Google Scholar 

  • Anjum NA, Ahmad I, Rodrigues SM, Henriques B, Cruz N, Coelho C, Pacheco M, Duarte AC, Pereira E (2013) Eriophorum angustifolium and Lolium perenne metabolic adaptations to metals- and metalloids-induced anomalies in the vicinity of a chemical industrial complex. Environ Sci Pollut Res 20:568–581

    CAS  Google Scholar 

  • Anjum NA, Gill SS, Gill R (2014a) Plant adaptation to environmental change: significance of amino acids and their derivatives. CABI, Wallingford

    Google Scholar 

  • Anjum NA, Umar S, Iqbal M (2014b) Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants—implications for phytoremediation. Environ Sci Pollut Res 21:10286–10293

    CAS  Google Scholar 

  • Anjum NA, Israr M, Duarte AC, Pereira ME, Ahmad I (2014c) Halimione portulacoides (L.) physiological/biochemical characterization for its adaptive responses to environmental mercury exposure. Environ Res 131:39–49

    CAS  Google Scholar 

  • Anjum NA, Duarte AC, Pereira E, Ahmad I (2014d) Oxidative stress status, antioxidant metabolism and polypeptide patterns in Juncus maritimus shoots exhibiting differential mercury burdens in Ria de Aveiro coastal lagoon (Portugal). Environ Sci Pollut Res 21:6652–6661

    CAS  Google Scholar 

  • Anjum NA, Duarte AC, Pereira E, Ahmad I (2014e) Juncus maritimus root biochemical assessment for its mercury stabilization potential in Ria de Aveiro coastal lagoon (Portugal). Environ Sci Pollut Res. doi:10.1007/s11356-014-3455-x

    Google Scholar 

  • Ansari MKA, Oztetik E, Ahmad A, Umar S, Iqbal M, Owens G (2013a) Identification of the phytoremediation potential of Indian mustard genotypes for copper, evaluated from a hydroponic experiment. Clean Soil Air Water 41:789–796

    CAS  Google Scholar 

  • Ansari MKA, Shao HB, Umar S, Ahmad A, Ansari SH, Iqbal M, Owens G (2013b) Screening Indian mustard genotypes for phytoremediating arsenic-contaminated soils. Clean Soil Air Water 41:195–201

    CAS  Google Scholar 

  • Armstrong D (2002) Oxidative stress, biomarkers and antioxidant protocols. In: Walker JM (ed) Methods in molecular biology. Humana Press, Totowa

    Google Scholar 

  • Ashraf MA, Ashraf A, Ali Q (2010) Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic content. Pak J Bot 42:559–565

    CAS  Google Scholar 

  • Ayala-Astorga GI, Alcaraz-Meléndez L (2010) Salinity effects on protein content, lipid peroxidation, pigments, and proline in Paulownia imperialis (Siebold and Zuccarini) and Paulownia fortunei (Seemann and Hemsley) grown in vitro. Electron J Biotechnol. doi:10.2225/vol13-issue5-fulltext-13

    Google Scholar 

  • Bannenberg G, Martínez M, Hamberg M, Castresana C (2009) Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44:85–95

    CAS  Google Scholar 

  • Banze M, Follmann H (2000) Organelle-specific NADPH thioredoxin reductase in plant mitochondria. J Plant Physiol 156:126–129

    CAS  Google Scholar 

  • Barkla B, Pantoja O (2011) Plasma membrane and abiotic stress. In: Murphy AS, Peer W, Shulz B (eds) The plant plasma membrane. Springer, Berlin Heidelberg, pp 457–470

    Google Scholar 

  • Bartoli CG, Gomez F, Martinez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 55:1663–1669

    CAS  Google Scholar 

  • Bashir F, Mahmooduzzafar STO, Iqbal M (2014) Alphamethrin (a synthetic pyrethroid)-induced oxidative stress and antioxidant-defence mechanism in Glycine max (L.) Merr. Int J Agric Sci 5:27–41

    Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1269–1278

    CAS  Google Scholar 

  • Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:797–803

    CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    CAS  Google Scholar 

  • Bhoomika K, Pyngrope S, Dubey RS (2014) Effect of aluminum on protein oxidation, non-protein thiols and protease activity in seedlings of rice cultivars differing in aluminum tolerance. J Plant Physiol 171:497–508

    CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    CAS  Google Scholar 

  • Boojar MMA, Goodarzi F (2007) The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine. Chemosphere 67:2138–2147

    CAS  Google Scholar 

  • Booker F, Muntifering R, McGrath M, Burkey K, Decoteau D et al (2009) The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integ Plant Biol 51:337–351

    CAS  Google Scholar 

  • Borchman D, Sinha S (2002) Determination of products of lipid oxidation by infrared spectroscopy. In: Armstrong D (ed) Oxidative stress biomarkers and antioxidant protocols. Humana Press Inc, Totowa, pp 21–28

    Google Scholar 

  • Boscolo PRS, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62:181–189

    CAS  Google Scholar 

  • Braconi D, Bernardini G, Santucci A (2011) Linking protein oxidation to environmental pollutants: redox proteomic approaches. J Proteomics 74:2324–2337

    CAS  Google Scholar 

  • Browne RW, Armstrong D (2002) Simultaneous determination of polyunsaturated fatty acids and corresponding monohydroperoxy and monohydroxy peroxidation products by HPLC. In: Armstrong D (ed) Oxidative stress biomarkers and antioxidant protocols. Humana Press Inc, Totowa, pp 13–20

    Google Scholar 

  • Buss IH, Chan TP, Sluis KB, Domigan NM, Winterbourn CC (1997) Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med 23:361–366

    CAS  Google Scholar 

  • Bykova NV, Rampitsch C (2013) Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics. Proteomics 13:579–596

    CAS  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

  • Castilhos G, Farias JG, de Bernardi Schneider A, De Oliveira PH et al (2011) Aluminum-stress response in oat genotypes with monogenic tolerance. Environ Exp Bot 74:114–121

  • Chang TC, Chou WY, Chang GG (2000) Protein oxidation and turnover. J Biomed Sci 7:357–363

    CAS  Google Scholar 

  • Chevion M, Berenshtein E, Stadtman ER (2000) Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res 33:S99–S108

    CAS  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Google Scholar 

  • Csiszár J, Gallé Á, Horváth E, Dancsó P, Gombos M, Váry Z, Erdei L, Györgyey J, Tari I (2012) Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress. Plant Physiol Biochem 52:119–129

    Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E et al (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    CAS  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E et al (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316

    CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    CAS  Google Scholar 

  • Davies MJ (2003) Synglet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305:761

    CAS  Google Scholar 

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    CAS  Google Scholar 

  • de Azevedo Neto AD, Tarquinio Prisco J, Enéas-Filho J, Braga de Abreu CE, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Google Scholar 

  • Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    CAS  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Google Scholar 

  • DeLong JM, Prange RK, Hodges DM, Forney CF, Bishop MC, Quilliam M (2002) Using a modified ferrous oxidation-xylenol orange (FOX) assay for detection of lipid hydroperoxides in plant tissue. J Agric Food Chem 50:248–254

    CAS  Google Scholar 

  • Diwan H, Ahmad A, Iqbal M (2008) Genotypic variation in the phytoremediation potential of Indian mustard for chromium. Environ Manag 41:734–741

    Google Scholar 

  • Diwan H, Khan I, Ahmad A, Iqbal M (2010) Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul 61:97–107

    CAS  Google Scholar 

  • Diwan H, Ahmad A, Iqbal M (2012) Characterization of chromium toxicity in food crops and their role in phytoremediation. J Bioremed Biodegrad 3:159

    CAS  Google Scholar 

  • Dominques MRM, Dominques P, Reis A, Fonseca C, Amado FML, Ferrer-Correia AJV (2003) Identification of oxidation products and free radicals of tryptophan by mass spectrometry. J Am Soc Mass Spectrom 14:406

    Google Scholar 

  • Eaton P (2006) Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radic Biol Med 40:1889–1899

    CAS  Google Scholar 

  • Elleuch A, Chaâbene Z, Grubb DC, Drira N, Mejdoub H, Khemakhem B (2013) Morphological and biochemical behavior of fenugreek (Trigonella foenum-graecum) under copper stress. Ecotoxicol Environ Saf 98:46–53

    CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 11:81–128

    CAS  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy. Meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Farfan-Vignolo ER, Asard H (2012) Effect of elevated CO2 and temperature on the oxidative stress response to drought in Lolium perenne L. and Medicago sativa L. Plant Physiol Biochem 59:55–62

    CAS  Google Scholar 

  • Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450

    CAS  Google Scholar 

  • Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik P (2012) The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep 39:6387–6397

    CAS  Google Scholar 

  • Ferreira-Silva SL, Voigt EL, Maia JM, Silva EN, Aragão TCR, Silveira JAG (2012) Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity. Biol Plant 56:172–176

    CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    CAS  Google Scholar 

  • Flint DH, Tuminello JF, Emptage MH (1993) The inactivation of Fe–S cluster containing hydro-lyases by superoxide. J Biol Chem 268:22369–22376

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    CAS  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    CAS  Google Scholar 

  • Furt F, Simon-Plas F, Mongrand S (2011) Lipids of the plant plasma membrane. In: Murphy AS, Peer W, Shulz B (eds) The plant plasma membrane. Springer, Berlin Heidelberg, pp 3–30

    Google Scholar 

  • Gajewska E, Bernat P, Długoński J, Skłodowsk M (2012) Effect of nickel on membrane integrity, lipid peroxidation and fatty acid composition in wheat seedlings. J Agron Crop Sci 198:286–294

    CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF et al (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    CAS  Google Scholar 

  • Garder HW (1991) Recent investigations into the lipoxygenase pathway of plants. Biochim Biophys Acta 1084:221–239

    Google Scholar 

  • Garrison WM (1987) Reaction mechanism in the radiolysis of peptides, polypeptides and proteins. Chem Rev 87:381–398

    CAS  Google Scholar 

  • Gevaert K, Van Damme P, Ghesquiere B, Vandekerckhove J (2006) Protein processing and other modifications analysed by diagonal peptide chromatography. Biochim Biophys Acta 1764:1801–1810

    CAS  Google Scholar 

  • Ghezzi P, Bonetto V (2003) Redox proteomics: identification of oxidatively modified proteins. Proteomics 3:1145–1153

    CAS  Google Scholar 

  • Ghezzi P, Romines B, Fratelli M, Eberini I, Gianazza E et al (2001) Protein glutathionylation: coupling and uncoupling of glutathione to protein thiol groups in lymphocytes under oxidative stress and HIV infection. Mol Immunol 38:773–780

    Google Scholar 

  • Ghosh D, Xu J (2014) Abiotic stress responses in plant roots: a proteomics perspective. Front Plant Sci. doi:10.3389/fpls.2014.00006

    Google Scholar 

  • Giannakoula A, Moustakas M, Syros T, Yupsanis T (2010) Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line. Environ Exp Bot 67:487–494

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  Google Scholar 

  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    CAS  Google Scholar 

  • Gladstone IM Jr, Levine RL (1994) Oxidation of proteins in neonatal lungs. Pediatrics 93:764–768

    Google Scholar 

  • Golovina EA, Hoekstra FA (2003) Structural changes in membranes of developing wheat embryos during the acquisition of desiccation tolerance. In: Nicolás G, Bradford KJ, Côme D, Pritchard HW (eds) The biology of seeds. Recent research advances. CAB International, Wallingford, pp 337–344

    Google Scholar 

  • Gomes-Junior RA, Gratão PL, Gaziola SA, Mazzafera P, Lea PJ, Azevedo RA (2007) Se-induced oxidative stress in coffee cell suspension cultures. Func Plant Biol 34:449–456

    CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    CAS  Google Scholar 

  • Griffiths G, Leverentz M, Silkowski H, Gill N, Sánchez-Serrano JJ (2000) Lipid hydroperoxide levels in plant tissues. J Exp Bot 51:1363–1370

    CAS  Google Scholar 

  • Gunes A, Inal A, Bagci EG, Coban S, Sahin O (2007) Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biol Plant 51:571–574

    CAS  Google Scholar 

  • Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    CAS  Google Scholar 

  • Hakeem KR, Khan F, Chandna R, Siddiqui TO, Iqbal M (2012) Genotypic variability among soybean genotypes under NaCl stress and proteome analysis of salt-tolerant genotype. Appl Biochem Biotechnol 168:2309–2329

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford Science Publications, NY

    Google Scholar 

  • Hameed A, Bibi N, Akhter J, Iqbal N (2011) Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol Biochem 49:178–185

    CAS  Google Scholar 

  • Hameed A, Goher M, Iqbal N (2013) Drought induced programmed cell death and associated changes in antioxidants, proteases, and lipid peroxidation in wheat leaves. Biol Plant 57:370–374

    CAS  Google Scholar 

  • Han C, Liu Q, Yang Y (2009) Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings. Plant Growth Regul 58:153–162

    CAS  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    CAS  Google Scholar 

  • Hossain Z, Nouri M-Z, Komatsu S (2012) Plant cell organelle proteomics in response to abiotic stress. J Proteome Res 11:37–48

    CAS  Google Scholar 

  • Hou W, Chen X, Song G, Wang Q, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted water body restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

  • Ikegawa H, Yamamoto Y, Matsumoto H (2000) Responses to aluminum of suspension-cultured tobacco cells in a simple calcium solution. Soil Sci Plant Nutr 46:503–514

    CAS  Google Scholar 

  • Israr M, Sahi SV (2006) Antioxidative responses to mercury in the cell cultures of Sesbania drummondii. Plant Physiol Biochem 44:590–595

    CAS  Google Scholar 

  • Jaspers P, Kangasjärvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138:405–413

    CAS  Google Scholar 

  • Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802

    CAS  Google Scholar 

  • Johansson E, Olsson O, Nystrom T (2004) Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J Biol Chem 279:22204–22208

    CAS  Google Scholar 

  • Kanoun M, Goulas P, Basseres A, Biolley JP (2002) Ozone-induced oxidation of Rubisco: from an ELISA quantification of carbonyls to putative pathways leading to oxidizing mechanisms. Funct Plant Biol 29:1357–1363

    CAS  Google Scholar 

  • Karuppanapandian T, Kim W (2013) Cobalt-induced oxidative stress causes growth inhibition associated with enhanced lipid peroxidation and activates antioxidant responses in Indian mustard (Brassica juncea L.) leaves. Acta Physiol Plant 35:2429–2443

    CAS  Google Scholar 

  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Hortic 126:402–407

    CAS  Google Scholar 

  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12:6894–6918

    CAS  Google Scholar 

  • Keunen E, Remans T, Opdenakker K, Jozefczak M, Gielen H, Guisez Y, Vangronsveld J, Cuypers A (2013) A mutant of the Arabidopsis thaliana LIPOXYGENASE1 gene shows altered signalling and oxidative stress related responses after cadmium exposure. Plant Physiol Biochem 63:272–280

    CAS  Google Scholar 

  • Khan NA, Nazar R, Anjum NA (2009) Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci Hortic 122:455–460

    CAS  Google Scholar 

  • Kingston-Smith AH, Foyer CH (2000) Bundle sheath proteins are more sensitive to oxidative damage than those of the mesophyll in maize leaves exposed to paraquat or low temperatures. J Exp Bot 51:123–130

    CAS  Google Scholar 

  • Kleinschmidt JH (2013) Lipid-protein interactions—methods and protocols, vol 974. Humana Press, Totowa

    Google Scholar 

  • Konrad A, Banze M, Follmann F (1996) Mitochondria of plant leaves contain two thioredoxins. Completion of the thioredoxin profile of higher plants. J Plant Physiol 149:317–321

    CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    CAS  Google Scholar 

  • Kumari S, Agrawal M, Singh A (2015) Effects of ambient and elevated CO2 and ozone on physiological characteristics, antioxidative defense system and metabolites of potato in relation to ozone flux. Environ Exp Bot 109:276–287

    CAS  Google Scholar 

  • Leitao L, Goulas P, Biolley JP (2003) Time-course of Rubisco oxidation in beans (Phaseolus vulgaris L.) subjected to a long-term ozone stress. Plant Sci 165:613–620

    CAS  Google Scholar 

  • Leverentz MK, Wagstaff C, Rogers HJ, Stead AD, Chanasut U et al (2002) Characterization of a novel lipoxygenase-independent senescence mechanism in Alstroemeria peruviana floral tissue. Plant Physiol 130:273–283

    CAS  Google Scholar 

  • Levine RL, Williams J, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    CAS  Google Scholar 

  • Li X, Zhang L, Li Y, Ma L, Bu N, Ma C (2012) Changes in photosynthesis, antioxidant enzymes and lipid peroxidation in soybean seedlings exposed to UV-B radiation and/or Cd. Plant Soil 352:377–387

    CAS  Google Scholar 

  • Liavonchanka A, Feussner I (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163:348–357

    CAS  Google Scholar 

  • Liptáková Ľ, Huttová J, Mistrík I, Tamás L (2013) Enhanced lipoxygenase activity is involved in the stress response but not in the harmful lipid peroxidation and cell death of short-term cadmium-treated barley root tip. J Plant Physiol 170:646–652

    Google Scholar 

  • Lόpez MA, Vicente J, Kulasekaran S, Vellosillo T, Martínez M, Irigoyen ML et al (2011) Antagonistic role of 9-lipoxygenase-derived oxylipins and ethylene in the control of oxidative stress, lipid peroxidation and plant defence. Plant J 67:447–458

    Google Scholar 

  • Maeda K, Finnie C, Svensson B (2005) Identification of thioredoxin h-reducible disulphides in proteomes by differential labelling of cysteines: insight into recognition and regulation of proteins in barley seeds by thioredoxin h. Proteomics 5:1634–1644

    CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  Google Scholar 

  • Majid U, Mahmooduzzafar STO, Iqbal M (2014) Antioxidant response of Cassia angustifolia Vahl. to oxidative stress caused by fungicide Mancozeb, a pyrethroid fungicide. Acta Physiol Plant 36:307–314

    CAS  Google Scholar 

  • Mäkinen M (2002) Lipid hydroperoxides: Effects of tocopherols and ascorbic acid on their formation and decomposition (dissertation). EKT series 1253. University of Helsinki. Department of Applied Chemistry and Microbiology, p.90

  • Maldonado-Magaña A, Favela-Torres E, Rivera-Cabrera F, Volke-Sepulveda TL (2011) Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production. Plant Soil 339:377–389

    Google Scholar 

  • Malecka A, Piechalak A, Zielińska B, Kutrowska A, Tomaszewska B (2014) Response of the pea roots defense systems to the two-element combinations of metals (Cu, Zn, Cd, Pb). Acta Biochim Pol 61:23–28

    CAS  Google Scholar 

  • Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyara H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248

    CAS  Google Scholar 

  • Martins N, Osório ML, Gonçalves S, Osório J, Romano A (2013) Differences in Al tolerance between Plantago algarbiensis and P. almogravensis reflect their ability to respond to oxidative stress. Biometals 26:427–437

    CAS  Google Scholar 

  • Matamoros MA, Fernández-García N, Wienkoop S, Loscos J, Saiz A, Becana M (2013) Mitochondria are an early target of oxidative modifications in senescing legume nodules. New Phytol 197:873–885

    CAS  Google Scholar 

  • McCarthy-Suárez I, Gómez M, del Río LA, Palma JM (2011) Organ-specific effects of the auxin herbicide 2,4-D on the oxidative stress and senescence-related parameters of the stems of pea plants. Acta Physiol Plant 33:2239–2247

    Google Scholar 

  • Melgar JC, Guidi L, Remorini D, Agati G, Degl’innocenti E et al (2009) Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance. Tree Physiol 29:1187–1198

    CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    CAS  Google Scholar 

  • Millar AH, Leaver CJ (2000) The cytotoxic lipid peroxidation product, 4-hydroxy-2-nonenal, specifically inhibits decarboxylating dehydrogenases in the matrix of plant mitochondria. FEBS Lett 481:117–121

    CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    CAS  Google Scholar 

  • Mirzaei H, Regnier F (2007) Identification of yeast oxidized proteins: chromatographic top-down approach for identification of carbonylated, fragmented and cross-linked proteins in yeast. J Chromatogr A 1141:22–31

    CAS  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565–577

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  Google Scholar 

  • Møller IM, Kristensen BK (2004) Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci 3:730–735

    Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Google Scholar 

  • Møller IM, Rogowska-Wrzesinska A, Rao RSP (2011) Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. J Proteomics 74:2228–2242

    Google Scholar 

  • Mouls L, Silajdzic E, Haroune N, Spickett MC, Pitt RA (2009) Development of novel mass spectrometric methods for identifying HOCl-induced modifications to proteins. Proteomic 9:1617–1631

    CAS  Google Scholar 

  • Murphy AS, Peer W, Shulz B (2011) The plant plasma membrane. Series—plant cell monographs, vol 19. Springer, Berlin Heidelberg

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Nakamura A, Goto S (1996) Analysis of protein carbonyls with 2, 4- dinitrophenyl hydrazine and its antibodies by immunoblot in two-dimensional gel electrophoresis. J Biochem 119:768–774

    CAS  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    CAS  Google Scholar 

  • Nourooz Zadeh J, Tajaddini Sarmadi J, Wolff SP (1994) Measurement of plasma hydroperoxide concentrations by the ferrous oxidation‐xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem 220:403–409

    CAS  Google Scholar 

  • Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environ Exp Bot 83:53–61

    CAS  Google Scholar 

  • Oracz K, Bouteau HEM, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452–465

    CAS  Google Scholar 

  • Orhan H, Vermeulen NP, Tump C, Zappey H, Meerman JH (2004) Simultaneous determination of tyrosine, phenylalanine and deoxyguanosine oxidation products by liquid chromatography-tandem mass spectrometry as non-invasive biomarkers for oxidative damage. J Chromatogr B 799:245–254

    CAS  Google Scholar 

  • Pan JW, Zhu MY, Chen H (2001) Aluminum-induced cell death in root-tip cells of barley. Environ Exp Bot 46:71–79

  • Pandey P, Srivastava RK, Dubey R (2013) Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology 22:656–670

    CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Google Scholar 

  • Pazmiño DM, Rodríguez Serrano M, Romero Puertas MC, Archilla Ruiz A, Del Rio LA, Sandalio LM (2011) Differential response of young and adult leaves to herbicide 2, 4‐dichlorophenoxyacetic acid in pea plants: role of reactive oxygen species. Plant Cell Environ 34:1874–1889

    Google Scholar 

  • Pereira LB, Mazzanti CMDA, Gonçalves JF, Cargnelutti D, Tabaldi LA et al (2010) Aluminum-induced oxidative stress in cucumber. Plant Physiol Biochem 48:683–689

    CAS  Google Scholar 

  • Porter NA, Caldwell SE, Mills KA (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–290

    CAS  Google Scholar 

  • Posmyk M, Kontek R, Janas K (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72:596–602

    CAS  Google Scholar 

  • Prasad T (1996) Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J 10:1017–1026

    CAS  Google Scholar 

  • Pyngrope S, Bhoomika K, Dubey R (2013) Oxidative stress, protein carbonylation, proteolysis and antioxidative defense system as a model for depicting water deficit tolerance in Indica rice seedlings. Plant Growth Regul 69:149–165

    CAS  Google Scholar 

  • Qiu QS, Huber JL, Booker FL, Jain V, Leakey AD et al (2008) Increased protein carbonylation in leaves of Arabidopsis and soybean in response to elevated [CO2]. Photosynthesis Res 97:155–166

    CAS  Google Scholar 

  • Qureshi MI, Abdin MZ, Qadir S, Iqbal M (2007) Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biol Plant 51:121–128

    CAS  Google Scholar 

  • Rajjou L, Lovigny Y, Groot SP, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148:620–641

    CAS  Google Scholar 

  • Rasheed R, Ashraf MA, Parveen S, Iqbal M, Hussain I (2014) Effect of salt stress on different growth and biochemical attributes in two canola (Brassica napus L.) cultivars. Commun Soil Sci Plant Anal 45:669–679

    CAS  Google Scholar 

  • Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangronsveld J, Cuypers A (2010) Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Func Plant Biol 37:532–544

    CAS  Google Scholar 

  • Requena JR, Chao CC, Levine RL, Stadtman ER (2001) Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalysed oxidation of proteins. Proc Natl Acad Sci U S A 98:69–74

    CAS  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    CAS  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species—contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    CAS  Google Scholar 

  • Richter T, Munch G, Luth HJ, Arendt T, Kientsch-Engel R et al (2005) Immunochemical crossreactivity of antibodies specific for “advanced glycation endproducts” with “advanced lipoxidation endproducts”. Neurobiol Aging 26:465–474

    CAS  Google Scholar 

  • Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59:3781–3801

    CAS  Google Scholar 

  • Robinson C, Mant A (2005) Biogenesis of the thylakoid membrane. In: Møller SG (ed) Plastids. Annual plant reviews, vol 13. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Romero Puertas M, Palma J, Gómez M, Del Rio L, Sandalio L (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2011) Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of Indica rice differing in their level of salt tolerance. J Plant Physiol 168:317–328

    CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34:835–847

    CAS  Google Scholar 

  • Sabater B, Martín M (2013) Hypothesis: increase of the ratio singlet oxygen plus superoxide radical to hydrogen peroxide changes stress defense response to programmed leaf death. Front Plant Sci. doi:10.3389/fpls.2013.00479

    Google Scholar 

  • Sakamoto A, Tsukamoto S, Yamamoto H, Ueda-Hashimoto M, Takahashi M, Suzuki H, Morikawa H (2003) Functional complementation in yeast reveals a protective role of chloroplast 2-Cys peroxiredoxin against reactive nitrogen species. Plant J 33:841–851

    CAS  Google Scholar 

  • Sekmen AH, Turkana I, Takiob S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritime and salt-sensitive Plantago media. Physiol Plant 131:399–411

    CAS  Google Scholar 

  • Sergio L, De Paola A, Cantore V, Pieralice M, Cascarano NA, Bianco VV, Di Venere D (2012) Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus L.). Acta Physiol Plant 34:2349–2358

    CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012, Article ID 217037

  • Shi C, Zhang Y, Bian K, Xu L (2011) Amount and activity changes of 20S proteasome modified by oxidation in salt-treated wheat root tips. Acta Physiol Plant 33:1227–1237

    CAS  Google Scholar 

  • Simat TJ, Steinhart H (1998) Oxidation of free tryptophan and tryptophan residues in peptides and proteins. J Agric Food Chem 46:490–498

    CAS  Google Scholar 

  • Simat T, Meyer K, Steinhart H (1994) Synthesis and analysis of oxidation and carbonyl condensation compounds of tryptophan. J Chromatography A 661:93–99

    CAS  Google Scholar 

  • Singh VP, Srivastava PK, Prasad SM (2012) Differential effect of UV-B radiation on growth, oxidative stress and ascorbate-glutathione cycle in two cyanobacteria under copper toxicity. Plant Physiol Biochem 61:61–70

    CAS  Google Scholar 

  • Sinha S, Basant A (2009) Iron-induced oxidative stress in a macrophyte: a chemometric approach. Ecotoxicol Environ Saf 72:585–595

    CAS  Google Scholar 

  • Skórzyńska-Polit E, Pawlikowska-Pawlęga B, Szczuka E, Drążkiewicz M, Krupa Z (2006) The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper stresses. Plant Growth Regul 48:29–39

    Google Scholar 

  • Slama I, Tayachi S, Jdey A, Rouached A, Abdelly C (2011) Differential response to water deficit stress in alfalfa (Medicago sativa) cultivars—growth, water relations, osmolyte accumulation and lipid peroxidation. Afr J Biotechnol 10:16250–16259

    CAS  Google Scholar 

  • Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8

    CAS  Google Scholar 

  • Sochor J, Ruttkay-Nedecky B, Babula P, Adam V, Hubalek J, Kizek R (2012) Automation of methods for determination of lipid peroxidation, lipid peroxidation. In: Catala A (ed), ISBN: 978-953-51-0716-3, InTech, DOI: 10.5772/45945. http://www.intechopen.com/books/lipid-peroxidation/automation-of-methods-for-determination-of-lipid-peroxidation

  • Södergren E (2000) Lipid peroxidation in vivo. Evaluation and application of methods for measurement. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 949, Uppsala, ISBN-91-554-4791-0, p.78

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004a) Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiol Plant 121:58–65

    CAS  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004b) Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Sci 166:293–302

    CAS  Google Scholar 

  • Sofo A, Vitti A, Nuzzaci M, Tataranni G, Scopa A, Vangronsveld J et al (2013) Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi‐pollution context. Physiol Plant 149:487–498

    CAS  Google Scholar 

  • Song H, Xu X, Wang H, Tao Y (2011) Protein carbonylation in barley seedling roots caused by aluminum and proton toxicity is suppressed by salicylic acid. Russ J Plant Physiol 58:653–659

    CAS  Google Scholar 

  • Sorkheh K, Shiran B, Rouhi V, Khodambashi M, Sofo A (2012) Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species. Acta Physiol Plant 34:203–213

    CAS  Google Scholar 

  • Spoljaric D, Cipak A, Horvatic J, Andrisic L, Waeg G, Zarkovic N, Jaganjac M (2011) Endogenous 4-hydroxy-2-nonenal in microalga Chlorella kessleri acts as a bioactive indicator of pollution with common herbicides and growth regulating factor of hormesis. Aquat Toxicol 105:552–558

    CAS  Google Scholar 

  • Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:1539–1550

    CAS  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    CAS  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    CAS  Google Scholar 

  • Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. J Biol Chem 266:2005–2008

    CAS  Google Scholar 

  • Štajner D, Orlovic S, Popovic B, Kebert M, Galic Z (2011) Screening of drought oxidative stress tolerance in Serbian melliferous plant species. Afr J Biotechnol 10:1609–1614

    Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    CAS  Google Scholar 

  • Sun WJ, Nie YX, Gao Y, Dai AH, Bai JG (2012) Exogenous cinnamic acid regulates antioxidant enzyme activity and reduces lipid peroxidation in drought-stressed cucumber leaves. Acta Physiol Plant 34:641–655

    CAS  Google Scholar 

  • Suzuki YJ, Carini M, Butterfield DA (2010) Protein carbonylation. Antioxid Redox Signal 12:323–325

    CAS  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Google Scholar 

  • Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2011) Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 33:877–886

    CAS  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    CAS  Google Scholar 

  • Szarka A, Tomasskovics B, Bánhegyi G (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 13:4458–4483

    CAS  Google Scholar 

  • Szuchman-Sapir AJ, Pattison DI, Ellis NA, Hawkins CL, Davies MJ, Witting PK (2008) Hypochlorous acid oxidizes methionine and tryptophan residues in myoglobin. Free Radic Biol Med 45:789–798

    CAS  Google Scholar 

  • Talukdar D (2012) Exogenous calcium alleviates the impact of cadmium-induced oxidative stress in Lens culinaris medic. Seedlings through modulation of antioxidant enzyme activities. J Crop Sci Biotechnol 15:325–334

    Google Scholar 

  • Tamas L, Dudikova J, Durcekova K, Haluskova L, Huttova J, Mistrik I (2009) Effect of cadmium and temperature on the lipoxygenase activity in barley root tip. Protoplasma 235:17–25

    CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65:270–281

    CAS  Google Scholar 

  • Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012) Oxidative and nitrosative‐based signaling and associated post‐translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72:585–599

    CAS  Google Scholar 

  • Taulavuori E, Hellström EK, Taulavuori K, Laine K (2001) Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. J Exp Bot 52:2375–2380

    CAS  Google Scholar 

  • Tayebimeigooni A, Awang Y, Mahmood M, Selamat A, Wahab Z (2012) Leaf water status, proline content, lipid peroxidation and accumulation of hydrogen peroxide in salinized Chinese kale (Brassica alboglabra). J Food Agric Environ 10:371–374

    CAS  Google Scholar 

  • Taylor NL, Day DA, Millar AH (2004) Targets of stress‐induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolism. J Exp Bot 55:1–10

    CAS  Google Scholar 

  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2005) Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 4:1122–1133

    CAS  Google Scholar 

  • Taylor NL, Tan YF, Jacoby RP, Millar AH (2009) Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. J Proteomics 72:367–378

    CAS  Google Scholar 

  • Teisseire H, Guy V (2000) Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Sci 153:65–72

    CAS  Google Scholar 

  • Tetlow IJ, Rawsthorne S, Raines C, Emes MJ (2004) Plastid metabolic pathways. In: Møller SG (ed) Plastids. Annual plant reviews, vol 13. Blackwell Publishing Ltd, Oxford, pp 60–125

    Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma G, Sahoo L, Panda S (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39

    CAS  Google Scholar 

  • Tian F, Gong J, Zhang J, Zhang M, Wang G et al (2013) Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. J Exp Bot 64:1509–1520

  • Tian Z, Wang F, Zhang W, Liu C, Zhao X (2012) Antioxidant mechanism and lipid peroxidation patterns in leaves and petals of marigold in response to drought stress. Hortic Environ Biotechnol 53:183–192

    CAS  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411

    CAS  Google Scholar 

  • Todorovski T, Fedorova M, Hoffmann R (2011) Mass spectrometric characterization of peptides containing different oxidized tryptophan residues. J Mass Spectrom 46:1030–1038

    CAS  Google Scholar 

  • Tripathi R, Sarkar A, Pandey Rai S, Agrawal S (2011) Supplemental ultraviolet‐B and ozone: impact on antioxidants, proteome and genome of linseed (Linum usitatissimum L. cv. Padmini). Plant Biol 13:93–104

    CAS  Google Scholar 

  • Umar S, Diva I, Anjum NA, Iqbal M, Ahmad I, Pereira E (2011) Potassium-induced alleviation of salinity stress in Brassica campestris L. Cent Eur J Biol 6:1054–1063

    CAS  Google Scholar 

  • Upadhyay RK, Panda SK (2009) Copper-induced growth inhibition, oxidative stress and ultrastructural alterations in freshly grown water lettuce (Pistia stratiotes L.). C R Biologies 332:623–632

  • Upadhyay R, Panda SK (2010) Zinc reduces copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown aquatic duckweed Spirodela polyrhiza L. J Hazard Mater 175:1081–1084

    CAS  Google Scholar 

  • Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    CAS  Google Scholar 

  • Van Acker SA, Tromp MN, Haenen GR, Vandervijgh W, Bast A (1995) Flavonoids as scavengers of nitric oxide radical. Biochem Biophys Res Commun 214:755–759

    Google Scholar 

  • Van de Weert M, Lagerwerf FM, Haverkamp J, Heerma W (1998) Mass spectrometric analysis of oxidized tryptophan. J Mass Spectrom 33:884–891

    Google Scholar 

  • Vellosillo T, Martínez M, López MA, Vicente J, Cascón T et al (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19:831–846

    CAS  Google Scholar 

  • Verniquet F, Gaillard J, Neuburger M, Douce R (1991) Rapid inactivation of plant aconitase by hydrogen peroxide. Biochem J 276:643–648

    CAS  Google Scholar 

  • Wagner BA, Buettner GR, Burns CP (1994) Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry 33:4449–4453

    CAS  Google Scholar 

  • Wehr NB, Levine RL (2012) Quantitation of protein carbonylation by dot blot. Anal Biochem 423:241–245

    CAS  Google Scholar 

  • Wehr NB, Levine RL (2013) Quantification of protein carbonylation. In: Galluzzi L, Vitale I, Kepp O, Kroemer G (eds) Cell senescence. Humana Press, Totowa, pp 265–281

    Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar C, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses: role of phospholipase Dα in freezing-induced lipid change in Arabidopsis. J Biol Chem 277:31994–30002

    CAS  Google Scholar 

  • Winger AM, Millar AH, Day DA (2005) Sensitivity of plant mitochondrial terminal oxidases to the lipid peroxidation product 4-hydroxy-2-nonenal (HNE). Biochem J 387:865–870

    CAS  Google Scholar 

  • Winterbourn CC, Buss IH (1999) Protein carbonyl measurement by enzyme-linked immunosorbent assay. Methods Enzymol 300:106–111

    CAS  Google Scholar 

  • Wolff SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233:182–189

    CAS  Google Scholar 

  • Wu K, Xiao S, Chen Q, Wang Q, Zhang Y, Li K, Yu Y, Chen L (2013) Changes in the activity and transcription of antioxidant enzymes in response to Al stress in black soybeans. Plant Mol Biol Rep 31:141–150

    CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    CAS  Google Scholar 

  • Yamauchi Y, Furutera A, Seki K, Toyoda Y, Tanaka K, Sugimoto Y (2008) Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiol Biochem 46:786–793

    CAS  Google Scholar 

  • Yan K, Chen W, He X, Zhang G, Xu S, Wang L (2010) Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environ Exp Bot 69:198–204

    CAS  Google Scholar 

  • Yano H, Wong J, Lee Y, Cho M (2001) A strategy for the identification of proteins targeted by thioredoxin. Proc Natl Acad Sci U S A 98:4794–4799

    CAS  Google Scholar 

  • Yin L, Mano JI, Wang S, Tsuji W, Tanaka K (2010) The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots. Plant Physiol 152:1406–1417

    CAS  Google Scholar 

  • Yoo YS, Regnier FE (2004) Proteomic analysis of carbonylated proteins in two-dimensional gel electrophoresis using avidin fluorescein affinity staining. Electrophoresis 25:1334–1341

    CAS  Google Scholar 

  • Zentgraf U (2007) Oxidative stress and leaf senescence. In: Gan S (ed) Senescence processes in plants. Blackwell Publishing Ltd, Oxford, pp 69–86

    Google Scholar 

  • Zhan J, Li W, He HY, Li CZ, He LF (2014) Mitochondrial alterations during Al-induced PCD in peanut root tips. Plant Physiol Biochem 75:105–113

    CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    CAS  Google Scholar 

  • Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509

    CAS  Google Scholar 

  • Zhu X, Song F, Liu S (2011) Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. J Food Agric Environ 9:583–587

    Google Scholar 

Download references

Acknowledgments

NAA (SFRH/BPD/84671/2012), ACD, EP, and IA are grateful to the Portuguese Foundation for Science and Technology (FCT) and the Aveiro University Research Institute/Centre for Environmental and Marine Studies (CESAM) for the partial financial support. AR gratefully acknowledges Science and Engineering Research Board (SERB), Government of India, for the research grant (SR/FT/LS-65/2010). ASL is indebted to the Ministry of Education and Science of Russia for the financial support (project no. 6.783.2014K). Authors apologize if some references related to the main theme of this article could not be cited due to space constraint. Authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naser A. Anjum, Muhammad Iqbal or Iqbal Ahmad.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjum, N.A., Sofo, A., Scopa, A. et al. Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22, 4099–4121 (2015). https://doi.org/10.1007/s11356-014-3917-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3917-1

Keywords

Navigation