Skip to main content
Log in

Effect of exogenous 24-epibrassinolide on chlorophyll fluorescence, leaf surface morphology and cellular ultrastructure of grape seedlings (Vitis vinifera L.) under water stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effects of 24-epibrassinolide (EBR) on chlorophyll fluorescence, leaf surface morphology and cellular ultrastructure of grape seedlings (Vitis vinifera L.) under water stress were investigated. The grape seedlings were subjected to 10 % (w/v) polyethylene glycol (PEG-6000) and treated with 0.05, 0.10 or 0.20 mg L−1 EBR, respectively. EBR application increased chlorophyll contents, the effective photochemical quantum yield of PSII, maximum photochemical efficiency of PSII, maximal fluorescence and non-photochemical quenching coefficient under water stress in each concentration. Compared with water stress control, higher stomatal density and stomatal length were observed in young leaves under EBR treatments, but not in mature leaves. In-depth analysis of the ultrastructure of leaves indicated that water stress induced disappearance of nucleus, chloroplast swelling, fractured mitochondrial cristae and disorder of thylakoid arrangement both in young leaves and mature leaves. However, EBR application counteracted the detrimental effects of water stress on the structure of the photosynthetic apparatus better in young leaves than in mature leaves. Compared to the other treatments, treatment of 0.10 mg L−1 EBR had best ameliorative effect against water stress. These results suggested that exogenous EBR could alleviate water stress-induced inhibition of photosynthesis on grape possibly through increasing chlorophyll content, lessening the stomatal and non-stomatal limitation of photosynthesis performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BRs:

Brassinosteroids

EBR:

24-Epibrassinolide

PEG-6000:

Polyethylene glycol-6000

Chl:

Chlorophyll

PSII:

Photosystem II

F o :

Minimal fluorescence

F v/F m :

Maximum photochemical quantum yield of PSII

ΦPSII:

Effective photochemical quantum yield of PSII

NPQ:

Non-photochemical quenching coefficient

LHC:

Light-harvesting complex

Chr:

Chromatin

CW:

Cell wall

Gt:

Grana thylakoid

M:

Mitochondrion

Nu:

Nucleolus

Pg:

Plastoglobule

SG:

Starch grain

References

  • Adams DB, Adams WW (1996) The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Ali B, Hayat S, Ahmad A (2007) 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environ Exp Bot 59:217–223

    Article  CAS  Google Scholar 

  • Ali Q, Athar HR, Ashraf M (2008) Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regul 56:107–116

    Article  CAS  Google Scholar 

  • Ali S, Farooq MA, Yasmeen T, Hussain S, Arif MS, Abbas F, Bharwana SA, Zhang G (2013) The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotox Environ Safe 89:66–72

    Article  CAS  Google Scholar 

  • Ali B, Qian P, Jin R, Ali S, Khan M, Aziz R, Tian T, Zhou W (2014) Physiological and ultra-structural changes in brassica napus seedlings induced by cadmium stress. Biol Plantarum 58:131–138

    Article  CAS  Google Scholar 

  • BajguzA HayatS (2009) Effect of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  Google Scholar 

  • Basile A, Sorbo S, Conte B, Cardi M, Esposito S (2013) Ultrastructural changes and heat shock proteins 70 induced by atmospheric pollution are similar to the effects observed under in vitro heavy metals stress in Conocephalum conicum (Marchantiales-Bryophyta). Environ Pollut 182:209–216

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  PubMed  Google Scholar 

  • Castle J, Montoya T, Bishop GJ (2003) Selected physiological responses of brassinosteroids: a historical approach. In: Hayat S, Ahmad A (eds) Brassinosteroids: Bioactivity and Crop Productivity. Kluwer Academic Publishers, Dordrecht, pp 45–68

    Chapter  Google Scholar 

  • Fariduddin Q, Khanam S, Hasan SA, Ali B, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant 31:889–897

    Article  CAS  Google Scholar 

  • Gao JF (2006) Experimental guide for Plant Physiology. Higher Education Press, Beijing

    Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Giles KL, Beardsell MF, Cohen D (1974) Cellular and ultrastructural changes in mesophyll and bundle sheath cells of maize in response to water stress. Plant Physiol 54:208–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giles KL, Cohen D, Beardsell MF (1976) Effects of water stress on the ultrastructure of leaf cells of Sorghum bicolor. Plant Physiol 57:11–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomes MMA, Netto AT, Campostrini E, Smith RB, Zullo MAT, Ferraz TM, Siqueira LN, Leal NR, VÁZquez MN (2013) Brassinosteroid analogue affects the senescence in two papaya genotypes submitted to drought stress. Theor Exp Plant Physiol 25:186–195

    Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Gunning BES, Steer MW (1996) Plant Cell Biology: structure and function. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • Hu WH, Yan XH, Xiao YA, Zeng JJ, Qi HJ, Ogweno JO (2013) 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci Hortic 150:232–237

    Article  CAS  Google Scholar 

  • Khripach V, Zhabinskii V, De Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  • Kitajima M, Butler WL (1975) Excitation spectra for photosystem I and photosystem II in chloroplasts and the spectral characteristics of the distributions of quanta between the two photosystems. Biochimicaet Biophysica Acta 408:297–305

    Article  CAS  Google Scholar 

  • Li YH, Liu YJ, Xu XL, Jin M, An LZ, Zhang H (2012) Effect of 24-epibrassinolide on drought stress-induced changes in Chorisporabungeana. BiolPlantarum 56:192–196

    Google Scholar 

  • Liu ZJ, Guo YK, Bai JG (2010) Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress. J Plant Growth Regul 29:171–183

    Article  Google Scholar 

  • Melkozernov AN (2006) Photosynthetic functions of chlorophylls. In: Blankenship RE, Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 397–412

    Chapter  Google Scholar 

  • Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, You JQ (2008) Nogués S.Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–57

    Article  CAS  Google Scholar 

  • Pääkkönen E, Vahala J, Pohjola M, Holopainen T, Kärenlampi L (1998) Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress. Plant Cell Environ 21:671–684

    Article  Google Scholar 

  • Qi W, Tan H, Zhai H (2006) Photosynthetic characters and fluorescence parameters of different grape stocks under water stress. Chin J Appl Ecol 17:835–838

    CAS  Google Scholar 

  • Qin HY, Ai J, Xu PL, Wang ZX, Zhao Y, Yang YM, Fan ST, Shen YJ (2013) Chlorophyll fluorescence parameters and ultrastructure in amur grape (Vitis amurensis Rupr.) under salt stress. Acta Bot Boreal 33:1159–1164

    CAS  Google Scholar 

  • Sasse J (1999) Physiological actions of brassinosteroids. In: Sakurai A, Yokota T, Clouse SD (eds) Brassinosteroids: steroidal plant hormones. Springer Verla gGmbh, Tokyo, pp 137–161

    Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  CAS  PubMed  Google Scholar 

  • Sayed OH (2003) Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41:321–330

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Athar HR (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticuma estivumL.)? Plant Growth Regul 55:51–61

    Article  CAS  Google Scholar 

  • Swamy KN, Rao SSR (2008) Influence of 28-homobrassinolide on growth, photosynthesis metabolite and essential oil content of geranium (Pelargonium graveolens (L.) Herit). Amer J Plant Physiol 3:173–179

    Article  CAS  Google Scholar 

  • Wu XX, Zhu ZW, Yao XF, Zhang H, Chen JL, Zha DS (2014) Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Acta Physiol Plant 36:251–261

    Article  Google Scholar 

  • Xi ZM, Sun WJ, Zhang ZW (2007) Effect of exogenous Ca2+ on drought resistance physiological indexes of wine grape cultivar Pinot Noir under water stress. J Northwest A&F Univ 35:137–146

    Google Scholar 

  • Xu S, Li JL, Zhang XQ, Wei H, Cui LJ (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogués S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Yuan GF, Jia CG, Li Z, Sun B, Zhang LP, Liu N, Wang QM (2010) Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hortic 126:103–108

    Article  CAS  Google Scholar 

  • Zhang GL, Chen LY, Zhang ST, Zheng H, Liu GH (2009) Effects of high temperature stress on microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of rice. Rice Sci 16:65–71

    Article  Google Scholar 

  • Zhou SX, Duursma RA, Medlyn BE, Kelly Jeff WG, Prentice IC (2013) How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agr Forest Meteorol 182–183:204–214

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Technology System for Grape Industry (CARS-30-zp-9), the Natural Science Foundation of Shaanxi Province (2011JM3004). Thanks for the Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest, Ministry of Agriculture of China. The authors are obliged to Tong Lu, M.S (Texas Christian University), who provided some useful comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhumei Xi.

Additional information

Communicated by P.K. Nagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zheng, P., Meng, J. et al. Effect of exogenous 24-epibrassinolide on chlorophyll fluorescence, leaf surface morphology and cellular ultrastructure of grape seedlings (Vitis vinifera L.) under water stress. Acta Physiol Plant 37, 1729 (2015). https://doi.org/10.1007/s11738-014-1729-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-014-1729-z

Keywords

Navigation