Skip to main content

Advertisement

Log in

Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Groundwater plays a dominant role in arid regions; it is among the most available water resources in Tunisia. Located in northwestern Tunisia, Oum Ali-Thelepte is a deep Miocene sedimentary aquifer, where groundwater is the most important source of water supply. The aim of the study is to investigate the hydrochemical processes leading to mineralization and to assess water quality with respect to agriculture and drinking for a better management of groundwater resources. To achieve such objectives, water analysis was carried out on 16 groundwater samples collected during January–February 2014. Stable isotopes and 26 hydrochemical parameters were examined. The interpretation of these analytical data showed that the concentrations of major and trace elements were within the permissible level for human use. The distribution of mineral processes in this aquifer was identified using conventional classification techniques, suggesting that the water facies gradually changes from Ca–HCO3 to Mg–SO4 type and are controlled by water–rock interaction. These results were endorsed using multivariate statistical methods such as principal component analysis and cluster analysis. The sustainability of groundwater for drinking and irrigation was assessed based on the water quality index (WQI) and on Wilcox and Richards’s diagrams. This aquifer has been classified as “excellent water” serving good irrigation in the area. As for the stable isotope, the measurements showed that groundwater samples lay between global meteoric water line (GMWL) and LMWL; hence, this arrangement signifies that the recharge of the Oum Ali-Thelepte aquifer is ensured by rainwater infiltration through mountains in the border of the aquifer without evaporation effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abid, K., Trabelsi, R., Zouari, K., & Abidi, B. (2009). Caractérisation hydrogéochimique de la nappe du continental intercalaire (sud tunisien) [Hydrogeochemical characterization of the continental intercalaire aquifer (southern Tunisia)]. Hydrological Sciences Journal, 54(3), 526–537. doi:10.1623/hysj.54.3.526.

    Article  CAS  Google Scholar 

  • Adams, S., Titus, R., Piertersen, K., Tresdoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology, 241, 91–103.

    Article  CAS  Google Scholar 

  • Aghazadeh, N., & Mogaddam, A. A. (2010). Assessment of groundwater quality and its suitability for dinking and agriculture uses in the Oshnavieh area, northwest of Iran. Journal of Environmental Protection, 1, 30–40.

    Article  CAS  Google Scholar 

  • AL-Charideh, A., Abou-Zakhem, B., AL-Charideh, A., & Abou-Zakhem, B. (2009). Geochemical and isotopic characterization of groundwater from the Paleogene limestone aquifer of the Upper Jezireh, Syria. Environmental Earth Science, 59, 1065–1078.

    Article  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: American public Health Association.

    Google Scholar 

  • Avvannavar, S. M., & Shrihari, S. (2008). Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environmental Monitoring Assessment, 143, 279–290.

    Article  CAS  Google Scholar 

  • Banoeng-Yakubo, B., Mark Yidana, S., & Nti, E. (2008). An evaluation of the genesis and suitability of groundwater for irrigation in the Volta Region, Ghana. Environmental Geology, 57, 1005–1010.

    Article  Google Scholar 

  • Belkhiri, L., Mouni, L., & Boudoukha, A. (2012). Geochemical evolution of groundwater in an alluvial aquifer: case of El Eulma aquifer, East Algeria. Environmental Earth Science, 67, 46–55.

    Google Scholar 

  • Ben Alaya, M., Abidi, S., Zemni, T., & Zargouni, F. (2014). Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (Northern Gabes, south-eastern Tunisia). Environmental Earth Science, 71, 3387–3421.

    Article  CAS  Google Scholar 

  • Berkaloff, E. (1931). Etude hydrogéologique de la plaine de Foussana. Tunisia: Bureau de l’Inventaire des Ressources Hydrauliques.

    Google Scholar 

  • Blanchette, D., Lefebvre, R., & Nastev, M. (2010). Groundwater quality, geochemical processes and groundwater evolution in the Chateauguay River watershed, Quebec, Canada. Canadian Water Resource Journal, 35(4), 503–526.

    Article  Google Scholar 

  • Bouzourra, H., Bouhlila, R., Elango, L., Slama, F., & Ouslati, N. (2014). Characterization of mechanisms and processes of groundwater stalinization in irrigated coastal area using statistics, GIS and hydrochemical investigations. Environmental Science Pollution Research. doi:10.1007/s11356-014-3428-0.

    Google Scholar 

  • Bru, K., Guézennec, A. G., Lanini, S., Graveline, N., Soulis, K., Karaouli, F., & Guesmi, A. (2008). Model development for integrated water management in the influence area of phosphate mines. International Congress on Environmental Modelling and Software, 606–613.

  • Burollet, P. F. (1956). Contribution à l’étude stratigraphique de la Tunisie Centrale. Tunisia: Annuaire Géologique des Mines.

    Google Scholar 

  • Carrier, M. A., Lefebvre, R., & Rivard, C. (2013). Portrait des ressources en eaux souterraines en Montérégie Est, Québec, Canada [Groundwater resource portrait in Montérégie Est, Québec, Canada]. Joint project between INRS, GSC-Québec, OBV Yamaska and IRDA within the Québec Groundwater Characterization program. Final report INRS R-1433, INRS, Quebec City, QB.

  • Cerling, T. E., Pederson, B. L., & Damm, K. L. V. (1989). Sodium calcium ion exchange in the weathering of shale: implications of global weathering budgets. Geology, 17, 552–554.

    Article  CAS  Google Scholar 

  • Chadha, D. K. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7, 431–439.

    Article  Google Scholar 

  • Chung, S. Y., Venkatramanan, S., Kim, T. H., Kim, D. S., & Ramkumar, T. (2014). Influence of hydrogeochemical processes and assessment of suitability for groundwater uses in Busan City, Korea. Environmental Development and Sustainability. doi:10.1007/s10668-014-9552-7.

    Google Scholar 

  • Cloutier, V., Lefebvre, R., & Savard, M. (2006). Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada. Journal of Hydrogeology, 14(4), 573–590.

    Article  CAS  Google Scholar 

  • Craig, H. (1961). Isotopic variation in meteoric waters. Science, 133, 1702–1703.

    Article  CAS  Google Scholar 

  • Davis, J. C. (1986). Statistics and data analysis in geology. Wiley.

  • Degalier, R. (1952). La nappe miocène de la Tunisie Centrale. Tunisia: Annuaire Géologique des Mines.

    Google Scholar 

  • DGRE (Direction Générale des Ressources en Eaux). (2006). Annuaire pluviométrique de la Tunisie, Tunisia.

  • Diary, A. (2007). Groundwater quality evaluation in Katar Town-Sulaimani/NE-Iraq. Iraqi Journal of Earth Sciences, 7, 31–52.

    Google Scholar 

  • Edumnds, W., Guendouz, A., Mamou, A., Moulla, A., Shand, P., & Zouari, K. (2003). Groundwater evolution in the continental intercalary aquifer of southern Algeria and Tunisia, trace element and isotopic indicators. Applied Geochemistry, 18, 805–822.

    Article  Google Scholar 

  • Faure, G. (1986). Principles of isotope geology. New York: Wiley.

    Google Scholar 

  • Faye, S., Maloszewski, P., Stichler, W., Trimborn, P., Cissé Faye, S., & Cissé Faye, S. (2005). Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators. Science of the Total Environment, 343, 243–259.

    Article  CAS  Google Scholar 

  • Fisher, R. S., & Mulican, W. F. (1997). Hydrochemical evolution of sodium-sulphate and sodium-chloride groundwater beneath the northern Chihuahuan desert, trans-Pecos, Texas, USA. Hydrogeology Journal, 5, 4–16.

    Article  Google Scholar 

  • Fontes, J. C., Coque, R., Dever, L., Filly, A., & Mamou, A. (1983). Paléo hydrologie isotopique de l’wadi el Akarit (sud tunisien) au Pléistocène et à l’Holocène. Pal Pal Pal, 43, 41–61.

    Article  CAS  Google Scholar 

  • Freez, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice Hall, Inc.

    Google Scholar 

  • Gat, J. R., & Carmi, I. (1970). Evolution of the isotopic composition of atmospheric water in the Mediterranean Sea area. Journal of Geophysical Research, 75, 3039–3048.

    Article  CAS  Google Scholar 

  • Gat, J. R., & Dansgaard, W. (1972). Stable isotope survey of the freshwater occurrence in Israel and northern Jordan rift valley. Journal of Hydrology, 16, 177–212.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanism controlling world water chemistry. Science, 170, 1088–1090.

    Article  CAS  Google Scholar 

  • Gonfiantini, R., Conrad, G., Fontes, J. C., Sauzy, G., & Payne, B. R. (1974). Etude isotopique de la nappe du continental intercalaire et de ses relations avec les autres nappes du Sahara septentrional. In Isotope Techniques in groundwater hydrology (pp. 227–241). Proc Symp IAEA Vienna I

  • Guendouz, A., Moulla, A. S., Edmunds, W. M., Zouari, K., Shand, P., & Mamou, A. (2003). Hydrogeochemical and isotopic evolution of water in the complex terminal aquifer in the Algerian Sahara. Journal of Hydrology, 11, 483–495.

    CAS  Google Scholar 

  • Halim, M. A., Majumder, R. K., Nessa, S. A., Hiroshiro, Y., Sasaki, K., Saha, B. B., Saepuloh, A., & Jinno, K. (2010). Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: spatial variability on arsenic and boron enrichment. Journal of Hazardous Materials, 180, 50–62.

    Article  CAS  Google Scholar 

  • Hamed, Y., & Dahri, F. (2013). Hydro-geochemical and isotopic composition of groundwater, with emphasis on sources of salinity, in the aquifer system in northwestern Tunisia. Journal of African Earth Science, 83, 10–24.

    Article  CAS  Google Scholar 

  • Hamed, Y., Demdoum, A., Al-Gamal, S. A., Bouri, S., & Ben Dhia, H. (2012). Groundwater recharge areas of the Continental Intercalaire aquifer—hydrogeochemical and environmental isotopes: southern Tunisia and Algeria. Quaternary International. doi:10.1016/j.quaint.2012.11.011.

    Google Scholar 

  • Hamed, Y., Ahmadi, R., Demdoum, A., Bouri, S., Gargouri, I., Ben Dhia, H., Al-Gamal, S., Laouar, R., & Choura, A. (2014). Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: a case study of Gafsa mining basin-southern Tunisia. Journal of African Earth Science, 100, 418–436.

    Article  CAS  Google Scholar 

  • Hamzaoui-Azaza, F., Ketata, M., Bouhlila, R., & Gueddari, M. (2011). Hydrochemical evolution and evolution of drinking water quality in Zeuss-Koutine aquifer, south-eastern of Tunisia. Environmental Monitoring and Assessment, 174, 283–298.

    Article  CAS  Google Scholar 

  • Hamzaoui-Azaza, F., Ameur, M., Bouhlila, R., & Gueddari, M. (2012). Geochemical Characterization of groundwater in a Miocene aquifer, southeastern Tunisia. Environmental and Engineering Geoscience, 18, 159–174.

    Article  Google Scholar 

  • Hamzaoui-Azaza, F., Tlili-Zrelli, B., Bouhlila, R., & Gueddari, M. (2013). An integrated statistical methods and modeling minerals-water interaction to identifying hydrochemical processes in groundwater in southern Tunisia. Chemical Speciation and Bioavailability, 25(3), 165–178.

    Article  Google Scholar 

  • Hassen, I. (2013). Modélisation hydrogéologique des nappes de Kasserine. Master thesis, University of Tunis el Manar, Tunisia.

  • Hassen, I., Bouhlila, R., Hamzaoui-Azaza, F., & Khanfir, R. (2014). Hydrogeological modeling of Kasserine aquifer system, central Tunisia. In 10th International Hydrogeological Congress of Greece/Thessaloniki (pp. 223–230).

  • Hounslow, A. W. (1995). Water quality data. Analysis and interpretation. New York: Lewis.

    Google Scholar 

  • Jalali, M. (2007). Stalinization of groundwater in arid and semiarid zones: an example from Tajarak, western Iran. Environmental Geology, 52, 1133–1149.

    Article  CAS  Google Scholar 

  • Jalali, M. (2009). Geochemistry characterization of groundwater in an agriculture area of Razan, Hamadan, Iran. Environmental Geology, 56, 1479–1488.

    Article  CAS  Google Scholar 

  • Jamieson, D. G., & Fedra, K. (1996). The “water ware” decision-support system for river-basin planning. 1. Conceptual design. Journal of Hydrology, 177(3–4), 163–175.

    Article  Google Scholar 

  • Karanth, K. R. (1987). Ground water assessment, development and management. New Delhi: Tata McGraw Hill.

    Google Scholar 

  • Khanfir, R. (1980). Contribution à l’étude hydrogéologique de la région d’Oum Ali Thelepte (Kasserine). Ph.D. Thesis, University of Pierre and Marie Curie, France.

  • Kim, J. H., Kim, R. H., Lee, J., Chenong, T. J., Yum, B. W., & Chang, H. W. (2005). Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal are of Kimje, South Korea. Hydrogeological Processes, 19, 1261–1276.

    Article  CAS  Google Scholar 

  • Kumar, M. (2004). An integrated hydrochemical and isotopic study of NCR-Delhi, India [in English]. Mphil. Jawaharal Nehru University.

  • Kumar, M., Kumari, K., Ramanathan, A., & Saxena, R. (2007). A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environmental Geology, 53, 553–574.

    Article  CAS  Google Scholar 

  • Langmuir, P. (1997). Aqueous environmental geochemistry. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Larocque, M., Gagné, S., & Tremblay, L. (2013). Projet de connaissances des eaux souterraines du bassin versant de la rivière Bécancour et de la MRC de Bécancour: rapport synthèse [Groundwater resources project in the watershed of Bécancour River and RCM of Bécancour: final report]. Report, Quebec Ministry of Environment, Wildlife and Parks, Quebec City, QB, 62 pp.

  • Leblanc, Y., Légaré, G., & Lacasse, A. (2013). Caractérisation hydrogéologique du sud-ouest de la Mauricie [Hydrogeologic characterization of south-west Mauricie]. Report submitted to the provincial Quebec Ministry of Environment, Wildlife and Parks, Dépt. des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QB, 134 pp.

  • Lecomte, K., Pasquini, A., & Depetris, P. (2005). Minerals weathering in a semiarid mountain river: its assessment through PHREEQC inverse modeling. Aquatic Geochemistry, 11, 173–194.

    Article  CAS  Google Scholar 

  • Li, P., Qian, H., & Wu, J. (2011). Hydrochemical characteristics and evolution laws of drinking groundwater in Pengyang County, Ningxia, Northwest China. E-Journal of Chemistry, 8(2), 565–575. doi:10.1155/2011/472085.

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2012). Groundwater quality assessment based on rough sets attribute reduction and TOPSIS method in a semi-arid area, China. Environmental Monitoring and Assessment, 184(8), 4841–4854. doi:10.1007/s10661-011-2306-1.

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2013a). Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environmental Earth Science, 69, 2211–2225.

    Article  CAS  Google Scholar 

  • Li, P., Qian, H., Wu, J., Zhang, Y., & Zhang, H. (2013b). Major ion chemistry of shallow groundwater in the Dongsheng Coalfield, Ordos Basin, China. Mine Water and the Environment, 32, 195–206.

    Article  CAS  Google Scholar 

  • M’Barek, J. (1981). Contribution à l’étude hydrogéologique de la plaine d’effondrement de Kasserine. PhD Thesis, University of Bordeaux I, France.

  • Maria, R., & Schumann, A. H. (2007). DSS application to development of water management strategies in Ribeiras do Algarve River basin. Water Resources Management, 21, 897–907.

    Article  Google Scholar 

  • Maya, A. L., & Loucks, M. D. (1995). Solute and isotopic geochemistry and groundwater flow in the Central Wasatch range, Utah. Journal of Hydrology, 172, 31–59.

    Article  Google Scholar 

  • Meng, S. X., & Maynard, J. B. (2001). Use of statistical analysis to formulate conceptual models of geochemical behaviour: water chemical data from the Botucatu aquifer in Sao Paulo state, Brazil. Journal of Hydrology, 250, 78–97.

    Article  CAS  Google Scholar 

  • Mishra, P. C., & Patel, R. K. (2001). Study of the pollution load in the drinking water of Rairangpur. A small tribal dominated town of North Orissa. Indian Journal of Environment and Ecoplanning, 5(2), 293–298.

    Google Scholar 

  • Montcoudiol, N., Molson, J., & Lemieu, J. M. (2014). Groundwater geochemistry of the Outaouais region (Québec, Canada): a regional-scale study. Hydrogeology Journal. doi:10.1007/s10040-014-1190-5.

    Google Scholar 

  • Mysiak, J., Guipponi, C., & Rosato, P. (2005). Towards the development of a decision support system for water resource management. Environmental Modelling and Software, 20(2), 203–214.

    Article  Google Scholar 

  • Ochsenkuehn, K. M., Kontoyannakos, J., & Ochsenkuehn, P. M. (1997). A new approach to a hydrochemical study of groundwater flow. Journal of Hydrology, 194(1–4), 64–75.

    Article  Google Scholar 

  • Papatheodorou, G., Lambrakis, N., & Panagopoulos, G. (2007). Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: an example from Crete, Greece. Hydrological Processes Journal, 21(11), 1482–1495.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2): a computer program for speciation, batch reaction, one dimensional transport, and inverse geochemical calculations. US Geol. Surv. Water Resour. Inverst. Rep.

  • Qian, H., Li, P., Wu, J., & Zhou, Y. (2013). Isotopic characteristics of precipitation, surface and ground waters in the Yinchuan Plain, Northwest China. Environmental Earth Sciences, 70(1), 57–70. doi:10.1007/s12665-012-2103-3.

    Article  Google Scholar 

  • Ragunath, H. M. (1987). Groundwater. New Delhi: Wiley Eastern Ltd.

    Google Scholar 

  • Ramesh, K., & Elango, L. (2011). Groundwater quality and its suitability for domestic and agricultural use in Tondiar River basin, Tamil Nadu, India. Environmental Monitoring Assessment. doi:10.1007/s10661-011-2231-3.

    Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline alkali soils. US Department of Agriculture, Hand Book.

  • Sacks, L. A., & Tihansky, A. B. (1996). Geochemical and isotopic composition of ground water, with emphasis on sources of sulfate, in the Upper Floridan Aquifer and Intermediate Aquifer System in southwest Florida. USGS, Washington, DC.

  • Saeedi, M., Sharifi, O. A., & Meraji, H. (2010). Development of groundwater quality index. Environmental Monitoring Assessment, 163, 327–335.

    Article  CAS  Google Scholar 

  • Sahu, P., & Sikdar, P. K. (2008). Hydrochemical framework of the aquifer in and around East Kolkata wetlands, West Bengal, India. Environmental Geology, 55, 823–835.

    Article  CAS  Google Scholar 

  • Singh, D. F. (1992). Studies on the water quality index of some major rivers of Pune, Maharashtra. Academic Proceeding Environmental Biology, 1(1), 61–66.

    Google Scholar 

  • Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., Vasanthavihar, M., Peter, J., & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain—a case study from Mettur taluk, Salem district, Tamil Nadu, India. Journal of Earth System Science, 117, 49–58.

    Article  CAS  Google Scholar 

  • Stimson, J., Frape, S., Drimmie, R., & Rudolph, D. (2001). Isotopic and geochemical evidence of regional-scale anisotropy and interconnectivity of an alluvial fan system, Cochabamba Valey, Bolivia. Applied Geochemistry, 16, 1097–1114.

    Article  CAS  Google Scholar 

  • Strohl, R., & Degalier, R. (1946). Etude hydrogéologique de la région de Feriana. Report, Tunisia.

  • SubbaRao, N. (1997). Studies on water quality index in hard rock terrain of Guntur District, Andhra Pradesh, India. In National Seminar on Hydrology of Precambrian Terrains and Hard Rock Areas, (pp. 129–134).

  • Subyani, A. M. (2004). Use of chloride mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Qadi Tharad, western Saudi Arabia. Environmental Geology, 46, 741–749.

    Article  CAS  Google Scholar 

  • Talbot Poulin, MC., Comeau, G., Tremblay, Y. (2013). Projet d’acquisition de connaissances sur les eaux souterraines du territoire de la Communauté Métropolitaine de Québec [Groundwater characterisation program in Québec City]. Final report, Dépt. De géologie et de génie géologique, Université Laval, Laval, QB, 172 pp

  • Tiwari, T. N., & Mishra, M. A. (1985). A preliminary assignment of water quality index of major Indian rivers. Indian Journal of Environmental Protection, 5, 276–279.

    CAS  Google Scholar 

  • Tlili-Zrelli, B., Hamzaoui-Azaza, F., Gueddari, M., & Bouhlila, R. (2013). Geochemistry and quality assessment of groundwater using graphical and multivariate statistical methods. A case study: Grombalia phreatic aquifer (northeastern Tunisia). Arabian Journal of Geosciences, 6, 3545–3561.

    Article  CAS  Google Scholar 

  • USSL. (1954). Diagnosis and improvement of saline and alkali soils. USDA. Handbook.

  • Varol, S., & Davraz, A. (2014). Evaluation of the groundwater quality with WQI (water quality index) and multivariate analysis: a case study of the Tefenni plain (Burdur/Turkey). Environmental Earth Science. doi:10.1007/s12665-014-3531-z.

    Google Scholar 

  • Vungopal, T. (2009). Environmental impact assessment and seasonal variation study of the groundwater in the vicinity of river of the Adyar, Chennai, India. Environmental Monitoring Assessment, 149, 81–97.

    Article  Google Scholar 

  • Wen, X. H., Wu, Y. Q., & Wu, J. (2008). Hydrochemical characteristics of groundwater in the Zhangye basin, Northwestern China. Environmental Geology, 55, 1713–124.

    Article  CAS  Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation water, circular 969. Washington, DC, USA.

  • World Health Organization (WHO). (2004). Guidelines for drinking water quality, vol. 1 recommendations (3rd). Geneva: WHO

  • World Health Organization (WHO). (2008). Guidelines for drinking water quality, vol. 1 recommendations (3rd). Geneva: WHO.

    Google Scholar 

  • Wu, J., Li, P., Qian, H., Duan, Z., & Zhang, X. (2014). Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arabian Journal of Geosciences, 7, 3973–3982.

    Article  CAS  Google Scholar 

  • Yangui, H., Zouari, K., & Rozanski, K. (2011). Hydrochemical and isotopic study of groundwater in Wadi El Hechim-Garaa Hamra basin, central Tunisia. Environmental Earth Science, 66, 1359–1370.

    Article  Google Scholar 

  • Yidana, S. M., & Yidaa, A. (2010). An assessment of the origin and variation of groundwater salinity in southeastern Ghana. Environmental Earth Science, 61, 1259–1273.

    Article  CAS  Google Scholar 

  • Yidana, S. M., Bruce Banoeng, Y., & Akabzaa, T. M. (2010). Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Journal of African Earth Sciences, 58, 220–234.

    Article  CAS  Google Scholar 

  • Zouari, K., Trabelsi, R., & Abid, K. (2005) Chemical and isotopic composition of rain water of station of Sfax. Tunisia. In Workshop on Chemical and isotopic composition of Rain Water of some Arab countries Beyrouth, Liban 25–26 December 2005.

Download references

Acknowledgments

This study was supported by the CILIUM project funded by the Swiss government. The authors warmly thank Dr. Ellen Milnes and Dr. Pierre Perrochet from the laboratory of the Centre of Hydrogeology and Geothermic (CHYN) in Neuchatel in Switzerland for their contribution to the analyses of the major and trace elements. We thank also Dr. Waber Niklaus from the laboratory of rock–water interaction in the Institute of Geological Sciences in Bern in Switzerland for his contribution to the isotopic analyses. The authors gratefully thank the National Society of Drinking Water in Tunisia (SONEDE), the Resources Water Direction of Tunis (DGRE) and the Regional Direction of Agriculture and Water Resources of Kasserine (CRDA Kasserine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Hassen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassen, I., Hamzaoui-Azaza, F. & Bouhlila, R. Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia. Environ Monit Assess 188, 135 (2016). https://doi.org/10.1007/s10661-016-5124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5124-7

Keywords

Navigation