Skip to main content
Log in

Genetic and epigenetic uniformity of polyembryony derived multiple seedlings of Hevea brasiliensis

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Hevea brasiliensis Muell. Arg (Para rubber tree) is a tropical tree species of Amazonian origin widely cultivated in several parts of the world for natural rubber, a highly priced commodity inevitable for the world rubber industry. Large, tree to tree variation in growth and latex yield among individual plants of high yielding Hevea clones is a common phenomenon observed in mature rubber plantations. The genetic heterogeneity of the seedlings which are used as rootstocks for propagation through budgrafting is considered as a major factor  responsible for this variation. In order to minimize this variation, attempts were made to develop highly uniform rootstock material via an in vitro technique by inducing zygotic polyembryony in Hevea. Immature open pollinated fruits of a high yielding clone RRII 105 were cultured by half ovulo embryo culture technique. Multiple embryos were induced from the 8–10-week-old zygote with a novel combination of gibberellic acid (GA3), kinetin, and zeatin. Plantlets were successfully generated from the multiple embryos and raised in the field post hardening. Screening using genetic and epigenetic molecular markers revealed that the multiple seedlings developed are highly uniform and are of single zygotic origin. Development of plants having genetic and epigenetic uniformity suggests that this technique is ideal for raising uniform rootstock material in Hevea which may significantly reduce intraclonal variations. Moreover, these plants could serve as ideal material for physiological and molecular investigations towards the understanding of  stock–scion interaction process in rubber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CW:

Coconut water

MSAP:

Methylation-sensitive amplification polymorphism

BP:

Banana powder

SV:

Somaclonal variation

ME:

Malt extract

CTAB:

Cetyl trimethylammonium bromide

CH:

Casein hydrolysate

References

  • Abirami K, Singh SK, Singh R, Mohapatra T, Kumar AR (2008) Genetic diversity studies on polyembryonic and monoembryonic mango genotypes using molecular markers. Indian J Hortic 65:258–262

    Google Scholar 

  • Almansa MS, Hernandez JA, Jimenez A, Botella MA, Sevilla F (2002) Effect of Salt stress on the superoxide dismutase activity in leaves of Citrus limonum in different rootstock-scion combinations. Biol Plantarum 45:545–549

    Article  CAS  Google Scholar 

  • Bairu MW, Fennell CW, Van Staden J (2006) The effect of plant growth regulators on somaclonal variation in.Cavendish banana (Musa AAA cv. ‘Zelig’). Sci Hortic 108:347–351

    Article  CAS  Google Scholar 

  • Batygina TB (1989) New approach to the system of reproduction in flowering plant. Phytomorphology 39:311–325

    Google Scholar 

  • Batygina TB, Freiberg TE (1979) Polyembryony in Poa pratensis L. (Poaceae). Botanicheskii Zhurnal 64:793–804

    Google Scholar 

  • Bednarek PT, Orłowska R, Koebner RMD, Zimny J (2007) Quantification of tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biol 7:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Biondi S, Thorpe TA (1982) Growth regulator effects, metabolic changes and respiration during shoot initiation in cultured cotyledon explants of Pinus radiata. Bot Gaz 143:22–25

    Article  Google Scholar 

  • Bower JP, Nel M (1981) Avocado (Persea americana) (Mill.) stock-scion interactions as evidenced by peroxidase activity and stem growth. South African Avocado Growers’ Association Yearbook 4:117–120

    Google Scholar 

  • Braun A (1860) Uber polyembryony and Kelmung von Caelebogyna.EinNachting under Abhandlungen uber parthenogenesis bei pflanzen. Abhandlungen der koniglichen Akademie der Wissenschaften Bedin 1859:109–263

    Google Scholar 

  • Buitendijk JH, Pinsonneaux N, Van Donk AC, Ramanna MS, Van Lammeren AAM (1995) Embryo rescue by half-ovule culture for the production of interspecific hybrids in Alstroemeria. Sci Hortic 64:65–75

    Article  Google Scholar 

  • Cardinal ABB, Goncalvis PS, Mello MAL (2007) Stock-scion interactions on growth and rubber yield of Hevea brasiliensis. Sci Agric (Piracicaba, Braz) 64:235–240

    Article  Google Scholar 

  • Chen Z, Gallie DR (2012) Induction of monozygotic twinning by ascorbic acid in tobacco. PLoS ONE 7(6):e39147. doi:10.1371/journal.pone.0039147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Combe JC (1975) Demonstration of intraclonal variability in young graft trees. Revue Generale des Caouth Plast 52:91–94

    Google Scholar 

  • Das K, Das G, Dey SK (2003) In vitro culture of immature embryos of Hevea brasiliensis. Indian J Nat Rub Res 16:122–126

    CAS  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Duncan RR (1997) Tissue culture-induced variation and crop improvement. Adv Agron 58:201–240

    Article  CAS  Google Scholar 

  • Ercan Y, Mustafa K, Turan HD, Aydın U, Celil T (2013) Identification of zygotic and nucellar individuals produced from several citrus crosses using SSR Markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41:478–484

    Google Scholar 

  • Erdelska O, Vidovencova Z (1992) Cleavage polyembryony in maize. Sex Plant Reprod 5:224–226

    Article  Google Scholar 

  • Etienne H, Bertrand B, Montagnon C, Bobadilla Landey R, Dechamp E et al (2012) Un exemple de transfert technologique réussi en micropropagation: la multiplication de Coffea arabica par embryogenèse somatique. Cah Agric 21:115–124

    Google Scholar 

  • Evans DA, Sharp WR and Bravo JE (1987). Plant somaclonal variation and mutagenesis. Nestlé Res News

  • Ferguson SJ, Jones TG, Kell DB, Sorgato MC (1979) Biochem J 180:75–85

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gerdakaneh M, Mozafari AA, Khalighi A, Sioseh-mardah (2009) The effects of carbohydrate source and concentration on somatic embryogenesis of Strawberry (Fragaria x ananassa Duch). Am-Eurasian J Agric Environ Sci 6:76–80

    CAS  Google Scholar 

  • Gonçalves B, Pereira MJ, Alberto S, Paula AS, Bacelar E, Carlos E, Rosa E (2005) Scion–rootstock interaction affects the physiology and fruit quality of sweet cherry. Tree Physiol 26:93–104

    Article  Google Scholar 

  • Haccius B (1955) Experimentally induced twinning in plants. Nature 176:355–356

    Article  Google Scholar 

  • Hartman CL, McCo TJ, Knous TR (1984) Selection of alfalfa (Medicago sativa) cell lines and regeneration of plants resistant to the toxin(s) produced by Fusarium oxysporum f.sp. medicaginis. Plant Sci Lett 34:183–194

    Article  Google Scholar 

  • Hu C, Wang P (1986) Embryo culture: technique and applications. In: Evans DA, Sharp WR, Ammirato PV (eds) Handbook of plant cell culture, vol 4. Macmillan, New York, pp 43–96

    Google Scholar 

  • Jayashree R, Rekha K, Venkatachalam P, Uratsu SL, Dendekar AM, Jayasree KP, Kala RG, Priya P, Sushamakumari S, Sobha S, Asokan MP, Sethuraj MR, Thulaseedharan A (2003) Genetic transformation and regeneration of rubber tree (Hevea brasiliensis Muell. Arg) transgenic plants with a constitutive version of an anti-oxidative stress superoxide dismutase gene. Plant Cell Rep 22:201–209

    Article  CAS  PubMed  Google Scholar 

  • Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW (2003) Rootstock effects on gene expression patterns in apple tree scions. Plant Mol Biol 53:493–511

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler SM, Phillips RL (1993) DNA methylation and tissue culture-induced DNA methylation variation in plants. In Vitro Cell Dev Biol-Pl 29:125–130

    Article  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  • Kanehira A, Yamada K, Iwaya T, Tsuwamoto R, Kasai A, Nakazono M, Harada T (2010) Apple phloem cells contain some mRNAs transported over long distances. Tree Genet Genomes 6:635–642

    Article  Google Scholar 

  • Karami OA, Deljou M, Esna-ashari P, Ostat-ahmadi (2006) Effect of sucrose concentrations on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Sci Hortic 110:340–344

    Article  CAS  Google Scholar 

  • Karp A (1994) Origins, causes, and uses of variation in plant tissue cultures. In: Vasil IK, Thorpe TA (eds) Plan cell and tissue culture. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 136–151

    Google Scholar 

  • Koepke T, Dhingra A (2013) Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Rep 32:1321–1337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Li HL, Zhang H, Yu C, Ma L, Wang Y, Zhang XZ, Han ZH (2012) Possible roles of auxin and zeatin for initiating the dwarfing effect of M9 used as apple rootstock or interstock. Acta Physiol Plant 34:235–244

    Article  CAS  Google Scholar 

  • LoSchiavo F, Pitto L, Giuliano G, Torti G, Nuti-Ronchi V et al (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones, and hypomethylating drugs. Theor Appl Genet 77:325–331

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Ballesta MC, Alcaraz-Lopez C, Muries B, Mota-Cadenas C, Carvajal M (2010) Physiological aspects of rootstock–scion interactions. Sci Hortic 127:112–118

    Article  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra A, Rout GR (2005) Study of embryo rescue in floribunda rose. Plant Cell Tiss Organ Cult 81:113–117

    Article  CAS  Google Scholar 

  • Nayanakantha NMC, Seneviratne P (2007) Tissue culture of rubber: past, present and future prospects. Cey J Sci (Bio Sci) 36:116–125

    Google Scholar 

  • Ng AP, Ho CY, Sultan MO, Ooi CB, Lew HL, Yoon PK (1981) Influence of six rootstocks on growth and yield of six scion clones of Hevea brasiliensis. In: RRIM planters's conference, London, Proceedings:134–151

  • Omokhafe KO (2004) Clonal stability of tree dryness in Hevea brasiliensis Muell. Arg. Genet Mol Biol 27:242–244

    Article  Google Scholar 

  • Reed SM (2005) Embryo rescue. In: Trigiano RN, Gray DJ (eds) Plant development and biotechnology. CRC press, LLC

    Google Scholar 

  • Rekha K, Jayashree R, Gireesh T, Sushamakumari S, Jomini KT, Priya SA, Jayasree PK, Sobha S, Kala RG, Thulaseedharan A (2010a) Embryo rescue and plant regeneration in Hevea brasiliensis. Nat Rub Res 23:147–154

    Google Scholar 

  • Rekha K, Jayashree R, Sushamakumari S, Sobha S, Gireesh T, Supriya R, Anita A, Saha T Thulaseedharan A (2010) Induction of zygotic polyembryony and development of of true-to-type seedlings of Hevea brasiliensis. In: International conference on “Biotechnology: A Global Scenario”. Kakatiya University, India abstract: 121–122

  • Rodrigues MGF, Martins ABG, Bertoni BW, Figueira A, Giuliatti S (2013) Search for methylation-sensitive amplification polymorphisms in mutant figs. Genet Mol Res 12:2267–2280

    Article  CAS  PubMed  Google Scholar 

  • Rogers WS, Beakbane AB (1957) Stock and Scion Relations. Annu Rev Plant Physiol Plant Mol Biol 8:217–236

    Article  CAS  Google Scholar 

  • Roy CB, Ravindran M, Saha T (2012) Efficient screening of aflp primer combinations for evaluating genetic diversity among cultivated rubber (Hevea brasiliensis) clones. Nat Rub Res 25:21–30

    CAS  Google Scholar 

  • Sanders ME (1950) Development of self and hybrid Datura embryos in artificial culture. Am J Bot 37:6–15

    Article  CAS  Google Scholar 

  • Saze H (2008) Epigenetic memory transmission through mitosis and meiosis in plants. Semin Cell Dev Biol 19:527–536

    Article  PubMed  Google Scholar 

  • Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L). BMC Plant Biol 8:78

    Article  PubMed Central  PubMed  Google Scholar 

  • Senanayake YDA, Wijewantha T (1968) Synthesis of Hevea cultivars: a new approach. J Rub Res Inst Ceylon 44:16–24

    Google Scholar 

  • Sharma DR, Kaur R, Kumar K (1996) Embryo rescue in plants—a review. Euphytica 89:325–337

    Google Scholar 

  • Shepard JF, Bidney D, Shahin E (1980) Potato protoplast in crop improvement. Science 28:17–24

    Article  Google Scholar 

  • Sobhana P, Jayasree G, Jacob J, Sethuraj MR (2001) Physiological and biochemical aspects of stock-scion interaction in Hevea brasiliensis. Indian J Nat Rub Res 14:131–136

    CAS  Google Scholar 

  • Stewart JM, Hsu CL (1978) Hybridisation of diploid and tetraploid cottons through in ovulo embryo culture. J Hered 69:404–408

    Google Scholar 

  • Tsolova' V, Atanassov A (1994) Induction of polyembryony and secondary embryogenesis in culture for embryo rescue of stenospermocarpic genotypes of Vitis vinifera L. Vitis 33:55–56

    Google Scholar 

  • Uthup TK, Ravindran M, Bini K, Saha T (2011) Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis. Mol Plant 4:996–1013

    Article  CAS  PubMed  Google Scholar 

  • Vengadesan GA, Ganapath AV, Ramesh DRP (2002) Somatic embryogenesis in cell suspension cultures of Acacia sinuate (Lour.) Merr. In Vitro Cell Dev Biol Plant 38:52–57

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jayasree PK, Sushmakumari S, Jayashree R, Rekha K, Sobha S, Priya P, Kala RG, Thulaseedharan A (2007) Current perspectives on application of biotechnology to assist the genetic improvement of rubber tree (Hevea brasiliensis Muell. Arg.): an overview. Func Plant Sci Biotechnol 1:1–17

    Google Scholar 

  • Villalobose VM, Oliver MJ, Yeung EC, Thorpe TA (1984) Cytokinin induced switch in development in excised cotyledon of radiata pine cultured in vitro. Physiol Plant 61:483–489

    Article  Google Scholar 

  • Webster AD (2004) Vigour mechanisms in dwarfing rootstocks for temperate fruit trees. Acta Hortic 658:29–41

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu M, Li X, Korban SS (2000) AFLP-based detection of DNA methylation. Plant Mol Biol Rep 18:361–368

    Article  CAS  Google Scholar 

  • Zatykó JM, Simon I, Szabó CS (1975) Induction of polyembryony in cultivated ovules of red currant. Plant Sci Lett 4:281

    Article  Google Scholar 

  • Zatykó JM, Kis F, Simon I, Szalay F (1981) Polyembryony of currents and gooseberry induced in vitro. Acta Hortic 120:211–216

    Google Scholar 

  • Zhang WN, Gong L, Ma C, Xu HY, Hu JF, Harada T, Li TZ (2012) Gibberellic acid-insensitive mRNA transport in Pyrus. Plant Mol Biol Rep 30:614–623

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. James Jacob, Director of Research and Dr. A Thulaseedharan, Deputy Director (Biotechnology) Rubber Research Institute of India for their interest and constant encouragement. We deeply appreciate the assistance provided by Ms. Minimol Ravindran in conducting the molecular studies. We also thank Mr. Madhusoodanan, Senior Scientist, Rubber Technology division, RRII for the photographs. This work was supported by the research funds of the Rubber Research Institute of India, Rubber Board (Ministry of Commerce and Industry, Government of India).

Conflict of interest

All authors except the fourth author are employees of the funding organization, Rubber Research Institute of India, Rubber Board (Ministry of Commerce and Industry, Government of India). The fourth author is a PhD scholar  having no financial relationship with the funding organization. The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas K. Uthup.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karumamkandathil, R., Uthup, T.K., Sankaran, S. et al. Genetic and epigenetic uniformity of polyembryony derived multiple seedlings of Hevea brasiliensis . Protoplasma 252, 783–796 (2015). https://doi.org/10.1007/s00709-014-0713-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0713-1

Keywords

Navigation