Skip to main content

Advertisement

Log in

Lumbar interbody fusion: recent advances in surgical techniques and bone healing strategies

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Lumbar interbody fusion (LIF) is a treatment option for low back pain secondary to lumbar instability and/or deformity. This review highlights recent studies of surgical techniques and bone healing strategies for LIF.

Methods

Relevant articles were identified by searching the PubMed database from January 1948 to April 2020, with a focus on the last 5 years, using the following keywords: LIF approach, LIF cage, stem cells for LIF, biomaterials for LIF, and osteobiologics for LIF.

Results

LIF procedures were traditionally performed through either a posterior approach (PLIF), or an anterior approach. Later, the transforaminal LIF approach gained popularity over the PLIF as it entailed less nerve retraction. To minimize paraspinal muscle dissections, alternative approaches including lateral LIF, oblique LIF, and minimally invasive approaches have been developed and utilized. These modifications have improved the surgical outcomes of LIF. However, the most recent rates of non-union after LIF procedures still ranged from 7 to 20% with an even higher incidence in patients with osteoporosis. This review summarizes the advantages and disadvantages of each surgical approach and current efforts to enhance LIF by improving fusion cage material properties and developing novel osteobiologic products that contain nanomaterials for controlled release of effective osteogenic proteins and mesenchymal stem cells.

Conclusions

There have been significant advances in surgical technologies for LIF over the past decades. Post-operative non-union remains a major challenge, which could be addressed by development of more effective surgical techniques, fusion cages, and bone healing products through joint efforts from spine surgeons, bone biologists, and material engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andersson GB (1998) Epidemiology of low back pain. Acta Orthop Scand Suppl 281:28–31

    Article  CAS  Google Scholar 

  2. Hoy D, Brooks P, Blyth F et al (2010) The Epidemiology of low back pain. Best Pract Res Clin Rheumatol 24:769–781. https://doi.org/10.1016/j.berh.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  3. Assaker R (2004) Minimal access spinal technologies: state-of-the-art, indications, and techniques. Joint Bone Spine Rev Rhum 71:459–469. https://doi.org/10.1016/j.jbspin.2004.08.006

    Article  Google Scholar 

  4. Maher C, Underwood M, Buchbinder R (2017) Non-specific low back pain. Lancet (London, England) 389:736–747. https://doi.org/10.1016/s0140-6736(16)30970-9

    Article  Google Scholar 

  5. Feng Y, Egan B, Wang J (2016) Genetic Factors in Intervertebral Disc Degeneration. Genes & diseases 3:178–185. https://doi.org/10.1016/j.gendis.2016.04.005

    Article  Google Scholar 

  6. Baliga S, Treon K, Craig NJ (2015) Low back pain: current surgical approaches. Asian spine journal 9:645–657. https://doi.org/10.4184/asj.2015.9.4.645

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mobbs RJ, Phan K, Malham G et al (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg (Hong Kong) 1:2–18. https://doi.org/10.3978/j.issn.2414-469X.2015.10.05

    Article  Google Scholar 

  8. Acosta FL, Liu J, Slimack N et al (2011) Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: a radiographic study. J Neurosurg Spine 15:92–96. https://doi.org/10.3171/2011.3.spine10425

    Article  PubMed  Google Scholar 

  9. Phan K, Rao PJ, Scherman DB et al (2015) Lateral lumbar interbody fusion for sagittal balance correction and spinal deformity. J Clin Neurosci 22:1714–1721. https://doi.org/10.1016/j.jocn.2015.03.050

    Article  PubMed  Google Scholar 

  10. Ozgur BM, Aryan HE, Pimenta L et al (2006) Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6:435–443. https://doi.org/10.1016/j.spinee.2005.08.012

    Article  PubMed  Google Scholar 

  11. Silvestre C, Mac-Thiong JM, Hilmi R et al (2012) Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J 6:89–97. https://doi.org/10.4184/asj.2012.6.2.89

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barbagallo GM, Albanese V, Raich AL et al (2014) Lumbar lateral interbody fusion (LLIF): comparative effectiveness and safety versus PLIF/TLIF and predictive factors affecting LLIF outcome. Evid Based Spine Care J 5:28–37. https://doi.org/10.1055/s-0034-1368670

    Article  PubMed  PubMed Central  Google Scholar 

  13. Phan K, Rao PJ, Kam AC et al (2015) Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: systematic review and meta-analysis. Eur Spine J 24:1017–1030. https://doi.org/10.1007/s00586-015-3903-4

    Article  PubMed  Google Scholar 

  14. Costanzo G, Zoccali C, Maykowski P et al (2014) The role of minimally invasive lateral lumbar interbody fusion in sagittal balance correction and spinal deformity. Eur Spine J 23(Suppl 6):699–704. https://doi.org/10.1007/s00586-014-3561-y

    Article  PubMed  Google Scholar 

  15. Ahn J, Tabaraee E, Singh K (2015) Minimally invasive transforaminal lumbar interbody fusion. J Spinal Disorders Tech 28:222–225. https://doi.org/10.1097/bsd.0000000000000289

    Article  Google Scholar 

  16. Deyo RA, Mirza SK, Martin BI et al (2010) Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA 303:1259–1265. https://doi.org/10.1001/jama.2010.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gologorsky Y, Knightly JJ, Chi JH et al (2014) The Nationwide Inpatient Sample database does not accurately reflect surgical indications for fusion. J Neurosurg Spine 21:984–993. https://doi.org/10.3171/2014.8.spine131113

    Article  PubMed  Google Scholar 

  18. Zhang H, Miao Q, Hao D et al (2019) Direction-changeable cage reduces X-ray exposure in treating isthmic lumbar spondylolisthesis: a retrospective study. Am J Transl Res 11:1066–1072

    PubMed  PubMed Central  Google Scholar 

  19. Mo GY, Guo HZ, Guo DQ et al (2019) Augmented pedicle trajectory applied on the osteoporotic spine with lumbar degenerative disease: mid-term outcome. J Orthop Surg Res 14:170. https://doi.org/10.1186/s13018-019-1213-y

    Article  PubMed  PubMed Central  Google Scholar 

  20. Formica M, Vallerga D, Zanirato A et al (2020) Fusion rate and influence of surgery-related factors in lumbar interbody arthrodesis for degenerative spine diseases: a meta-analysis and systematic review. Musculoskelet Surg. https://doi.org/10.1007/s12306-019-00634-x

    Article  PubMed  Google Scholar 

  21. Konomi T, Yasuda A, Fujiyoshi K et al (2019) Incidences and risk factors for postoperative non-union after posterior lumbar interbody fusion with closed-box titanium spacers. Asian Spine J. https://doi.org/10.31616/asj.2019.0024

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cho JH, Hwang CJ, Kim H et al (2018) Effect of osteoporosis on the clinical and radiological outcomes following one-level posterior lumbar interbody fusion. J Orthop Sci 23:870–877. https://doi.org/10.1016/j.jos.2018.06.009

    Article  PubMed  Google Scholar 

  23. Madhu TS (2008) Posterior and anterior lumbar interbody fusion. Curr Ort 22:406–413. https://doi.org/10.1016/j.cuor.2008.07.006

    Article  Google Scholar 

  24. Cloward RB (1953) The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg 10:154–168. https://doi.org/10.3171/jns.1953.10.2.0154

    Article  CAS  PubMed  Google Scholar 

  25. Okuda S, Miyauchi A, Oda T et al (2006) Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients. J Neurosurg Spine 4:304–309. https://doi.org/10.3171/spi.2006.4.4.304

    Article  PubMed  Google Scholar 

  26. Chen L, Yang H, Tang T (2005) Cage migration in spondylolisthesis treated with posterior lumbar interbody fusion using BAK cages. Spine 30:2171–2175

    Article  Google Scholar 

  27. Okuyama K, Abe E, Suzuki T et al (1999) Posterior lumbar interbody fusion: a retrospective study of complications after facet joint excision and pedicle screw fixation in 148 cases. Acta Orthop Scand 70:329–334

    Article  CAS  Google Scholar 

  28. Sakaura H, Miwa T, Yamashita T et al (2016) Posterior lumbar interbody fusion with cortical bone trajectory screw fixation versus posterior lumbar interbody fusion using traditional pedicle screw fixation for degenerative lumbar spondylolisthesis: a comparative study. J Neurosurg Spine 25:591–595. https://doi.org/10.3171/2016.3.spine151525

    Article  PubMed  Google Scholar 

  29. Maruenda JI, Barrios C, Garibo F et al (2016) Adjacent segment degeneration and revision surgery after circumferential lumbar fusion: outcomes throughout 15 years of follow-up. Eur Spine J 25:1550–1557. https://doi.org/10.1007/s00586-016-4469-5

    Article  PubMed  Google Scholar 

  30. Mannion AF, Leivseth G, Brox JI et al (2014) ISSLS Prize winner: long-term follow-up suggests spinal fusion is associated with increased adjacent segment disc degeneration but without influence on clinical outcome: results of a combined follow-up from 4 randomized controlled trials. Spine 39:1373–1383. https://doi.org/10.1097/brs.0000000000000437

    Article  PubMed  Google Scholar 

  31. Javedan SP, Dickman CA (1999) Cause of adjacent-segment disease after spinal fusion. Lancet (London, England) 354:530–531. https://doi.org/10.1016/s0140-6736(99)00201-9

    Article  CAS  Google Scholar 

  32. Humphreys SC, Hodges SD, Patwardhan AG et al (2001) Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine 26:567–571

    Article  CAS  Google Scholar 

  33. Brislin B, Vaccaro AR (2002) Advances in posterior lumbar interbody fusion. Orthop Clin N Am 33:367–374

    Article  Google Scholar 

  34. Potter BK, Freedman BA, Verwiebe EG et al (2005) Transforaminal lumbar interbody fusion: clinical and radiographic results and complications in 100 consecutive patients. J Spinal Disorders Tech 18:337–346

    Article  Google Scholar 

  35. Hey HW, Hee HT (2010) Lumbar degenerative spinal deformity: surgical options of PLIF, TLIF and MI-TLIF. Indian J orthop 44:159–162. https://doi.org/10.4103/0019-5413.62066

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lowe TG, Tahernia AD, O’Brien MF et al (2002) Unilateral transforaminal posterior lumbar interbody fusion (TLIF): indications, technique, and 2-year results. J spinal Disorders Tech 15:31–38

    Article  Google Scholar 

  37. Hoy K, Bunger C, Niederman B et al (2013) Transforaminal lumbar interbody fusion (TLIF) versus posterolateral instrumented fusion (PLF) in degenerative lumbar disorders: a randomized clinical trial with 2-year follow-up. Eur Spine J 22:2022–2029. https://doi.org/10.1007/s00586-013-2760-2

    Article  PubMed  PubMed Central  Google Scholar 

  38. Videbaek TS, Christensen FB, Soegaard R et al (2006) Circumferential fusion improves outcome in comparison with instrumented posterolateral fusion: long-term results of a randomized clinical trial. Spine 31:2875–2880. https://doi.org/10.1097/01.brs.0000247793.99827.b7

    Article  PubMed  Google Scholar 

  39. Brantigan JW, Neidre A, Toohey JS (2004) The Lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a Food and Drug Administration clinical trial. Spine J 4:681–688. https://doi.org/10.1016/j.spinee.2004.05.253

    Article  PubMed  Google Scholar 

  40. Lane JD Jr, Moore ES Jr (1948) Transperitoneal approach to the intervertebral disc in the lumbar area. Ann Surg 127:537–551

    Article  Google Scholar 

  41. Mobbs RJ, Phan K, Thayaparan GK et al (2016) Anterior lumbar interbody fusion as a salvage technique for pseudarthrosis following posterior lumbar fusion surgery. Glob Spine J 6:14–20. https://doi.org/10.1055/s-0035-1555656

    Article  Google Scholar 

  42. Scaduto AA, Gamradt SC, Yu WD et al (2003) Perioperative complications of threaded cylindrical lumbar interbody fusion devices: anterior versus posterior approach. J Spinal Disorders Tech 16:502–507

    Article  Google Scholar 

  43. Jackson KL, Yeoman C, Chung WM et al (2014) Anterior lumbar interbody fusion: two-year results with a modular interbody device. Asian Spine J 8:591–598. https://doi.org/10.4184/asj.2014.8.5.591

    Article  PubMed  PubMed Central  Google Scholar 

  44. Strube P, Hoff E, Hartwig T et al (2012) Stand-alone anterior versus anteroposterior lumbar interbody single-level fusion after a mean follow-up of 41 months. J Spinal Disorders Tech 25:362–369. https://doi.org/10.1097/BSD.0b013e3182263d91

    Article  Google Scholar 

  45. Shim JH, Kim WS, Kim JH et al (2011) Comparison of instrumented posterolateral fusion versus percutaneous pedicle screw fixation combined with anterior lumbar interbody fusion in elderly patients with L5-S1 isthmic spondylolisthesis and foraminal stenosis. J Neurosurg Spine 15:311–319. https://doi.org/10.3171/2011.4.spine10653

    Article  PubMed  Google Scholar 

  46. Gumbs AA, Bloom ND, Bitan FD et al (2007) Open anterior approaches for lumbar spine procedures. Am J Surg 194:98–102. https://doi.org/10.1016/j.amjsurg.2006.08.085

    Article  PubMed  Google Scholar 

  47. Matge G, Leclercq TA (2000) Rationale for interbody fusion with threaded titanium cages at cervical and lumbar levels. Results on 357 cases. Acta neurochirurgica 142:425–433; discussion 434

  48. Inoue S, Watanabe T, Hirose A et al (1984) Anterior discectomy and interbody fusion for lumbar disc herniation. A review of 350 cases. Clin Orthop Relat Res 183:22–31

    Google Scholar 

  49. Kozak JA, Heilman AE, O’Brien JP (1994) Anterior lumbar fusion options. Technique and graft materials. Clinical orthopaedics and related research:45-51

  50. Burkus JK, Schuler TC, Gornet MF et al (2004) Anterior lumbar interbody fusion for the management of chronic lower back pain: current strategies and concepts. Orthop Clin N Am 35:25–32. https://doi.org/10.1016/s0030-5898(03)00053-1

    Article  Google Scholar 

  51. Videbaek TS, Bunger CE, Henriksen M et al (2011) Sagittal spinal balance after lumbar spinal fusion: the impact of anterior column support results from a randomized clinical trial with an eight- to thirteen-year radiographic follow-up. Spine 36:183–191. https://doi.org/10.1097/BRS.0b013e3181cc8fce

    Article  PubMed  Google Scholar 

  52. Berjano P, Lamartina C (2011) Minimally invasive lateral transpsoas approach with advanced neurophysiologic monitoring for lumbar interbody fusion. Eur Spine J 20:1584–1586. https://doi.org/10.1007/s00586-011-1997-x

    Article  PubMed  PubMed Central  Google Scholar 

  53. Berjano P, Gautschi OP, Schils F et al (2015) Extreme lateral interbody fusion (XLIF(R)): how I do it. Acta Neurochir 157:547–551. https://doi.org/10.1007/s00701-014-2248-9

    Article  PubMed  Google Scholar 

  54. Dakwar E, Vale FL, Uribe JS (2011) Trajectory of the main sensory and motor branches of the lumbar plexus outside the psoas muscle related to the lateral retroperitoneal transpsoas approach. J Neurosurg Spine 14:290–295. https://doi.org/10.3171/2010.10.spine10395

    Article  PubMed  Google Scholar 

  55. Guerin P, Obeid I, Bourghli A et al (2012) The lumbosacral plexus: anatomic considerations for minimally invasive retroperitoneal transpsoas approach. Surg Radiol Anat SRA 34:151–157. https://doi.org/10.1007/s00276-011-0881-z

    Article  PubMed  Google Scholar 

  56. Uribe JS, Arredondo N, Dakwar E et al (2010) Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine 13:260–266. https://doi.org/10.3171/2010.3.spine09766

    Article  PubMed  Google Scholar 

  57. Berjano P, Langella F, Damilano M et al (2015) Fusion rate following extreme lateral lumbar interbody fusion. Eur Spine J 24(Suppl 3):369–371. https://doi.org/10.1007/s00586-015-3929-7

    Article  PubMed  Google Scholar 

  58. Formica M, Berjano P, Cavagnaro L et al (2014) Extreme lateral approach to the spine in degenerative and post traumatic lumbar diseases: selection process, results and complications. Eur Spine J 23(Suppl 6):684–692. https://doi.org/10.1007/s00586-014-3545-y

    Article  PubMed  Google Scholar 

  59. Phan K, Maharaj M, Assem Y et al (2016) Review of early clinical results and complications associated with oblique lumbar interbody fusion (OLIF). J Clin Neurosci 31:23–29. https://doi.org/10.1016/j.jocn.2016.02.030

    Article  PubMed  Google Scholar 

  60. Sato J, Ohtori S, Orita S et al (2015) Radiographic evaluation of indirect decompression of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spondylolisthesis. Eur Spine J. https://doi.org/10.1007/s00586-015-4170-0

    Article  PubMed  Google Scholar 

  61. Rodgers WB, Gerber EJ, Patterson J (2011) Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine 36:26–32. https://doi.org/10.1097/BRS.0b013e3181e1040a

    Article  PubMed  Google Scholar 

  62. Ahmadian A, Bach K, Bolinger B et al (2015) Stand-alone minimally invasive lateral lumbar interbody fusion: multicenter clinical outcomes. J Clin Neurosci 22:740–746. https://doi.org/10.1016/j.jocn.2014.08.036

    Article  PubMed  Google Scholar 

  63. Ozgur BM, Agarwal V, Nail E et al (2010) Two-year clinical and radiographic success of minimally invasive lateral transpsoas approach for the treatment of degenerative lumbar conditions. SAS J 4:41–46. https://doi.org/10.1016/j.esas.2010.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  64. Phan K, Mobbs RJ (2015) Oblique lumbar interbody fusion for revision of non-union following prior posterior surgery: a case report. Orthop Surg 7:364–367. https://doi.org/10.1111/os.12204

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mobbs RJ, Loganathan A, Yeung V et al (2013) Indications for anterior lumbar interbody fusion. Orthop Surg 5:153–163. https://doi.org/10.1111/os.12048

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rao PJ, Loganathan A, Yeung V et al (2015) Outcomes of anterior lumbar interbody fusion surgery based on indication: a prospective study. Neurosurgery 76:7–23; discussion 23–24. https://doi.org/10.1227/neu.0000000000000561

  67. Phan K, Mobbs RJ (2015) Sacrum fracture following L5–S1 stand-alone interbody fusion for isthmic spondylolisthesis. J Clin Neurosci 22:1837–1839. https://doi.org/10.1016/j.jocn.2015.03.055

    Article  PubMed  Google Scholar 

  68. Abe K, Orita S, Mannoji C et al (2016) Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: perspectives and indications from a retrospective, multicenter survey. Spine (Phila Pa 1976). https://doi.org/10.1097/brs.0000000000001650

    Article  Google Scholar 

  69. Rao PJ, Ghent F, Phan K et al (2015) Stand-alone anterior lumbar interbody fusion for treatment of degenerative spondylolisthesis. J Clin Neurosci 22:1619–1624. https://doi.org/10.1016/j.jocn.2015.03.034

    Article  PubMed  Google Scholar 

  70. Cummock MD, Vanni S, Levi AD et al (2011) An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine 15:11–18. https://doi.org/10.3171/2011.2.spine10374

    Article  PubMed  Google Scholar 

  71. Mummaneni PV, Dhall SS, Eck JC et al (2014) Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 11: interbody techniques for lumbar fusion. J Neurosurg Spine 21:67–74. https://doi.org/10.3171/2014.4.spine14276

    Article  PubMed  Google Scholar 

  72. Ryu D, Yoon BH, Oh CH et al (2018) Activin A/BMP2 chimera (AB204) exhibits better spinal bone fusion properties than rhBMP2. J Kor Neurosurg Soc 61:669–679. https://doi.org/10.3340/jkns.2017.0295

    Article  CAS  Google Scholar 

  73. Esmail N, Buser Z, Cohen JR et al (2018) Postoperative complications associated with rhBMP2 use in posterior/posterolateral lumbar fusion. Glob Spine J 8:142–148. https://doi.org/10.1177/2192568217698141

    Article  Google Scholar 

  74. Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20:1055–1060

    Article  CAS  Google Scholar 

  75. Summers BN, Eisenstein SM (1989) Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br 71:677–680

    Article  CAS  Google Scholar 

  76. Stark JR, Hsieh J, Waller D (2019) Bone graft substitutes in single- or double-level anterior cervical discectomy and fusion: a systematic review. Spine 44:E618–e628. https://doi.org/10.1097/brs.0000000000002925

    Article  PubMed  Google Scholar 

  77. Kumagai H, Abe T, Koda M et al (2019) Unidirectional porous beta-tricalcium phosphate induces bony fusion in lateral lumbar interbody fusion. J Clin Neurosci 59:232–235. https://doi.org/10.1016/j.jocn.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  78. Duarte RM, Varanda P, Reis RL et al (2017) Biomaterials and bioactive agents in spinal fusion. Tissue Eng Part B Rev 23:540–551. https://doi.org/10.1089/ten.TEB.2017.0072

    Article  PubMed  Google Scholar 

  79. Xu L, Anderson AL, Lu Q et al (2007) Role of fibrillar structure of collagenous carrier in bone sialoprotein-mediated matrix mineralization and osteoblast differentiation. Biomaterials 28:750–761. https://doi.org/10.1016/j.biomaterials.2006.09.022

    Article  CAS  PubMed  Google Scholar 

  80. Kruger TE, Miller AH, Wang J (2013) Collagen scaffolds in bone sialoprotein-mediated bone regeneration. Sci World J 2013:812718. https://doi.org/10.1155/2013/812718

    Article  CAS  Google Scholar 

  81. Wang Q, Wang J, Lu Q et al (2010) Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects. Biomaterials 31:4980–4986. https://doi.org/10.1016/j.biomaterials.2010.02.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Basu S, Pacelli S, Wang J et al (2017) Adoption of nanodiamonds as biomedical materials for bone repair. Nanomedicine (London, England) 12:2709–2713. https://doi.org/10.2217/nnm-2017-0304

    Article  CAS  Google Scholar 

  83. Urist MR (1965) Bone: formation by autoinduction. Science (New York, NY) 150:893–899. https://doi.org/10.1126/science.150.3698.893

    Article  CAS  Google Scholar 

  84. Wozney JM, Rosen V, Celeste AJ et al (1988) Novel regulators of bone formation: molecular clones and activities. Science (New York, NY) 242:1528–1534. https://doi.org/10.1126/science.3201241

    Article  CAS  Google Scholar 

  85. Dimar JR, Glassman SD, Burkus KJ et al (2006) Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine 31:2534–2539; discussion 2540. https://doi.org/10.1097/01.brs.0000240715.78657.81

  86. Bess S, Line BG, Lafage V et al (2014) Does recombinant human bone morphogenetic protein-2 use in adult spinal deformity increase complications and are complications associated with location of rhBMP-2 use? A prospective, multicenter study of 279 consecutive patients. Spine 39:233–242. https://doi.org/10.1097/brs.0000000000000104

    Article  PubMed  Google Scholar 

  87. Skovrlj B, Koehler SM, Anderson PA et al (2015) Association between BMP-2 and carcinogenicity. Spine 40:1862–1871. https://doi.org/10.1097/brs.0000000000001126

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shields LB, Raque GH, Glassman SD et al (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 31:542–547. https://doi.org/10.1097/01.brs.0000201424.27509.72

    Article  PubMed  Google Scholar 

  89. Vaidya R, Carp J, Sethi A et al (2007) Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. Eur Spine J 16:1257–1265. https://doi.org/10.1007/s00586-007-0351-9

    Article  PubMed  PubMed Central  Google Scholar 

  90. Carragee EJ, Chu G, Rohatgi R et al (2013) Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. J Bone Joint Surg Am 95:1537–1545. https://doi.org/10.2106/jbjs.L.01483

    Article  PubMed  Google Scholar 

  91. Mesfin A, Buchowski JM, Zebala LP et al (2013) High-dose rhBMP-2 for adults: major and minor complications: a study of 502 spine cases. J Bone Joint Surg Am 95:1546–1553. https://doi.org/10.2106/jbjs.L.01730

    Article  PubMed  Google Scholar 

  92. Rao PJ, Pelletier MH, Walsh WR et al (2014) Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg 6:81–89. https://doi.org/10.1111/os.12098

    Article  PubMed  PubMed Central  Google Scholar 

  93. Smit TH, Müller R, van Dijk M et al (2003) Changes in bone architecture during spinal fusion: three years follow-up and the role of cage stiffness. Spine (Phila Pa 1976) 28:1802-1808; discussion 1809. https://doi.org/10.1097/01.brs.0000083285.09184.7a

  94. Kashii M, Kitaguchi K, Makino T et al (2019) Comparison in the same intervertebral space between titanium-coated and uncoated PEEK cages in lumbar interbody fusion surgery. J Orthop Sci. https://doi.org/10.1016/j.jos.2019.07.004

    Article  PubMed  Google Scholar 

  95. Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28:4845–4869. https://doi.org/10.1016/j.biomaterials.2007.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nemoto O, Asazuma T, Yato Y et al (2014) Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J 23:2150–2155. https://doi.org/10.1007/s00586-014-3466-9

    Article  PubMed  Google Scholar 

  97. McGilvray KC, Easley J, Seim HB et al (2018) Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J 18:1250–1260. https://doi.org/10.1016/j.spinee.2018.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  98. Walsh WR, Pelletier MH, Christou C et al (2018) The in vivo response to a novel Ti coating compared with polyether ether ketone: evaluation of the periphery and inner surfaces of an implant. Spine J 18:1231–1240. https://doi.org/10.1016/j.spinee.2018.02.017

    Article  PubMed  Google Scholar 

  99. Cheng BC, Koduri S, Wing CA et al (2018) Porous titanium-coated polyetheretherketone implants exhibit an improved bone-implant interface: an in vitro and in vivo biochemical, biomechanical, and histological study. Med Devices (Auckland, NZ) 11:391–402. https://doi.org/10.2147/mder.S180482

    Article  Google Scholar 

  100. Struwe C, Hermann PC, Bornemann R et al (2017) A novel PLIF PEEK interbody cage with an impactionless insertion technology: a case series with a mid-term follow up of three years. Technol Health Care 25:949–957. https://doi.org/10.3233/thc-160721

    Article  PubMed  Google Scholar 

  101. Hawasli AH, Khalifeh JM, Chatrath A et al (2017) Minimally invasive transforaminal lumbar interbody fusion with expandable versus static interbody devices: radiographic assessment of sagittal segmental and pelvic parameters. Neurosurg Focus 43:E10. https://doi.org/10.3171/2017.5.Focus17197

    Article  PubMed  Google Scholar 

  102. Volpe RH, Mistry D, Patel VV et al (2020) Dynamically crystalizing liquid-crystal elastomers for an expandable endplate-conforming interbody fusion cage. Adv Healthc Mater 9:e1901136. https://doi.org/10.1002/adhm.201901136

    Article  CAS  PubMed  Google Scholar 

  103. Gelfand Y, Benton J, De la Garza-Ramos R et al (2020) Effect of cage type on short-term radiographic outcomes in transforaminal lumbar interbody fusion. World Neurosurg. https://doi.org/10.1016/j.wneu.2020.06.096

    Article  PubMed  Google Scholar 

  104. Sakaura H, Ikegami D, Fujimori T et al (2019) Early cephalad adjacent segment degeneration after posterior lumbar interbody fusion: a comparative study between cortical bone trajectory screw fixation and traditional trajectory screw fixation. J Neurosurg Spine. https://doi.org/10.3171/2019.8.spine19631

    Article  PubMed  Google Scholar 

  105. Hsu WK, Goldstein CL, Shamji MF et al (2017) Novel osteobiologics and biomaterials in the treatment of spinal disorders. Neurosurgery 80:S100–s107. https://doi.org/10.1093/neuros/nyw085

    Article  PubMed  Google Scholar 

  106. Blanco JF, Villaron EM, Pescador D et al (2019) Autologous mesenchymal stromal cells embedded in tricalcium phosphate for posterolateral spinal fusion: results of a prospective phase I/II clinical trial with long-term follow-up. Stem Cell Res Ther 10:63. https://doi.org/10.1186/s13287-019-1166-4

    Article  PubMed  PubMed Central  Google Scholar 

  107. Khan S, Mafi P, Mafi R et al (2018) A systematic review of mesenchymal stem cells in spinal cord injury, intervertebral disc repair and spinal fusion. Curr Stem Cell Res Ther 13:316–323. https://doi.org/10.2174/1574888x11666170907120030

    Article  CAS  PubMed  Google Scholar 

  108. Ajiboye RM, Hamamoto JT, Eckardt MA et al (2015) Clinical and radiographic outcomes of concentrated bone marrow aspirate with allograft and demineralized bone matrix for posterolateral and interbody lumbar fusion in elderly patients. Eur Spine J 24:2567–2572. https://doi.org/10.1007/s00586-015-4117-5

    Article  PubMed  Google Scholar 

  109. Cottrill E, Pennington Z, Ahmed AK et al (2019) The effect of electrical stimulation therapies on spinal fusion: a cross-disciplinary systematic review and meta-analysis of the preclinical and clinical data. J Neurosurg Spine. https://doi.org/10.3171/2019.5.spine19465

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Mary and Paul Harrington distinguished Professorship Endowment as well as the Allie and Marc Asher Orthopedic Research Endowment. The authors thank Drs. Yi Feng and Mingcai Zhang for their expert drawing of illustrations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Douglas Burton or Jinxi Wang.

Ethics declarations

Conflict of interest

All the authors state that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, B., Bunch, J., Burton, D. et al. Lumbar interbody fusion: recent advances in surgical techniques and bone healing strategies. Eur Spine J 30, 22–33 (2021). https://doi.org/10.1007/s00586-020-06596-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-020-06596-0

Keywords

Navigation