Skip to main content
Log in

A particle finite element method for analysis of industrial forming processes

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a generalized Lagrangian formulation for analysis of industrial forming processes involving thermally coupled interactions between deformable continua. The governing equations for the deformable bodies are written in a unified manner that holds both for fluids and solids. The success of the formulation lays on a residual-based expression of the mass conservation equation obtained using the finite calculus method that provides the necessary stability for quasi/fully incompressible situations. The governing equations are discretized with the FEM via a mixed formulation using simplicial elements with equal linear interpolation for the velocities, the pressure and the temperature. The merits of the formulation are demonstrated in the solution of 2D and 3D thermally-coupled forming processes using the particle finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Chenot JL, Oñate E (1988) Modelling of metal forming processes. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  2. Pietrzyk M, Kusiak J, Majta J, Hartley P, Pillinger I (2000) Metal forming 2000. A.A Balkema, Rotterdam

    Google Scholar 

  3. Pittman JFT, Zienkiewicz OC, Wood RD, Alexander JM (eds) (1984) Numerical analysis of forming processes. Wiley, Chichester

    MATH  Google Scholar 

  4. Zienkiewicz OC, Jain PC, Oñate E (1978) Flow of solids during forming and extrusion: some aspects of numerical solutions. Int J Solids Struct 14:15–38

    Article  Google Scholar 

  5. Zienkiewicz OC, Oñate E (1981) A general formulation for coupled thermal flow of metals using finite elements. Int J Numer Methods Eng 17:1495–1514

    Google Scholar 

  6. Zienkiewicz OC, Taylor RL, Nithiarasu P (2005) The finite element method for fluid dynamics, vol 3, 6th edn. Elsevier, Oxford

    Google Scholar 

  7. Ghosh S, Castro JC, Lee JK (2004) Material processing and design: simulation and applications. NUMIFORM 2004. American Institute of Physics, Melville

    Google Scholar 

  8. Huetnik J, Baaijens FPT (Eds) (1998) Simulation of materials processing: theory, methods and applications, NUMIFORM 98. Enschede, Países Bajos, A.A. Balkema, Rotterdam, pp 22–5

  9. Mori K (2001) Simulation of material processing: theory, methods and applications. AA Balkema, Lisse

    Google Scholar 

  10. Oñate E, Owen DRJ (2007) Computational plasticity. Springer, New York

    Book  MATH  Google Scholar 

  11. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, vol 2, 6th edn. Elsevier, Oxford

    MATH  Google Scholar 

  12. Aubry R, Idelsohn SR, Oñate E (2005) Particle finite element method in fluid-mechanics including thermal convection-diffusion. Comput Struct 83(17–18):1459–1475

    Article  Google Scholar 

  13. Aubry R, Idelsohn SR, Oñate E (2006) Fractional step like schemes for free surface problems with thermal coupling using the Lagrangian PFEM. Comput Mech 38(4–5):294–309

    Article  MATH  MathSciNet  Google Scholar 

  14. Carbonell JM, Oñate E, Suárez B (2010) Modeling of ground excavation with the particle finite element method. J Eng Mech 136(4):455–463

    Article  Google Scholar 

  15. Carbonell JM, Oñate E, Suárez B (2013) Modelling of tunnelling processes and cutting tool wear with the particle finite element method (PFEM). Comput Mech 52(3):607–629

    Article  MATH  Google Scholar 

  16. Franci A, Oñate E, Carbonell JM (2013) On the effect of the tangent bulk stiffness matrix in the analysis of free surface Lagrangian flows using PFEM. Research Report CIMNE PI402. Submitted to Int J Numer Methods Biomed Eng

  17. Idelsohn SR, Calvo N, Oñate E (2003c) Polyhedrization of an arbitrary point set. Comput Method Appl Mech Eng 192(22–24):2649–2668

    Article  MATH  Google Scholar 

  18. Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Biomed Eng 61(7):964–989

    Article  MATH  Google Scholar 

  19. Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197:1762–1776

    Article  MATH  Google Scholar 

  20. Idelsohn SR, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198:2750–2767

    Article  MATH  Google Scholar 

  21. Larese A, Rossi R, Oñate E, Idelsohn SR (2008) Validation of the particle finite element method (PFEM) for simulation of free surface flows. Eng Comput 25(4):385–425

    Article  MATH  Google Scholar 

  22. Limache A, Idelsohn SR, Rossi R, Oñate E (2007) The violation of objectivity in Laplace formulation of the Navier–Stokes equations. Int J Numer Methods Fluids 54:639–664

    Article  MATH  Google Scholar 

  23. Oliver X, Cante JC, Weyler R, González C, Hernández J (2007) Particle finite element methods in solid mechanics problems. In: Oñate E, Owen R (eds) Computational plasticity. Springer, Berlin, pp 87–103

    Chapter  Google Scholar 

  24. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004b) The particle finite element method: an overview. Int J Comput Methods 1(2):267–307

    Article  MATH  Google Scholar 

  25. Oñate E, Celigueta MA (2006) Modeling bed erosion in free surface flows by the particle finite element method. Acta Geotechnia 1(4):237–252

    Article  Google Scholar 

  26. Oñate E, Rossi R, Idelsohn SR, Butler K (2010) Melting and spread of polymers in fire with the particle finite element method. Int J Nume Methods Eng 81(8):1046–1072

    MATH  Google Scholar 

  27. Oñate E, Celigueta MA, Idelsohn SR, Salazar F, Suárez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput Mech 48(3):307–318

    Article  MATH  MathSciNet  Google Scholar 

  28. Oñate E, Carbonell JM (2013) Updated Lagrangian finite element formulation for quasi-incompressible fluids. Research Report PI393, CIMNE. Submitted to Comput. Mechanics

  29. Oñate E, Franci A, Carbonell JM (2013) Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. J Numer Methods Fluids Int. doi:10.1002/fld.3870

  30. Tang B, Li JF, Wang TS (2009) Some improvements on free surface simulation by the particle finite element method. Int J Numer Methods Fluids 60(9):1032–1054

    Article  MATH  MathSciNet  Google Scholar 

  31. Oñate E, Rojek J, Chiumenti M, Idelsohn SR, Del Pin F, Aubry R (2006) Advances in stabilized finite element and particle methods for bulk forming processes. Comput Methods Appl Mech Eng 195:6750–6777

    Article  MATH  Google Scholar 

  32. Oñate E (1998) Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput Methods Appl Mech Eng 151:233–267

    Article  MATH  Google Scholar 

  33. Oñate E, Manzan M (1999) A general procedure for deriving stabilized space–time finite element methods for advective-diffusive problems. Int J Numer Methods Fluids 31:203–221

    Article  MATH  Google Scholar 

  34. Oñate E (2000) A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput Methods Appl Mech Eng 182(1–2):355–370

    Article  MATH  Google Scholar 

  35. Oñate E (2004) Possibilities of finite calculus in computational mechanics. Int J Numer Methods Eng 60(1):255–281

    Article  MATH  Google Scholar 

  36. Oñate E, Rojek J, Taylor R, Zienkiewicz O (2004a) Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int J Numer Methods Eng 59(11):1473–1500

    Article  MATH  Google Scholar 

  37. Oñate E, Valls A, García J (2006) FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynold’s numbers. Comput Mech 38(4–5):440–455

    Article  MATH  Google Scholar 

  38. Oñate E, García J, Del Pin F (2006) FIC formulations for finite element analysis of incompressible flows. Comput Methods Appl Mech Eng 195(23–24):3001–3037

    Article  MATH  Google Scholar 

  39. Oñate E, Idelsohn SR, Felippa C (2011) Consistent pressure Laplacian stabilization for incompressible continua via higher-order finite calculus. Int J Numer Meth Eng 87(1–5):171–195

    Article  MATH  Google Scholar 

  40. Franci A, Oñate E, Carbonell JM (2014) Unified updated Lagrangian formulation for fluid-structure interaction problems. Publication CIMNE No. PI404

  41. Belytschko T, Liu WK, Moran B (2013) Non linear finite element for continua and structures, 2d edn. Wiley, New York

  42. Donea J, Huerta A (2003) Finite element method for flow problems. Wiley, New York

    Book  Google Scholar 

  43. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method, vol 1, 6th edn. Elsevier, Oxford

    MATH  Google Scholar 

  44. Oñate E (2009) Structural analysis with the finite element method. Linear statics, vol 1. Basis and Solids. CIMNE-Springer

  45. Ryzhakov P, Oñate E, Rossi R, Idelsohn SR (2012) Improving mass conservation in simulation of incompressible flows. Int J Numer Methods Eng 90(12):1435–1451

    Article  MATH  Google Scholar 

  46. Edelsbrunner H, Mucke EP (1999) Three dimensional alpha shapes. ACM Trans Graphics 13:43–72

    Article  Google Scholar 

  47. Oñate E, Idelsohn SR, Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197(19–20):1777–1800

    Article  MATH  Google Scholar 

  48. Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98:41–104

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Advanced Grant project SAFECON of the European Research Council and the HFLUIDS project of the National Research Programme of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Oñate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oñate, E., Franci, A. & Carbonell, J.M. A particle finite element method for analysis of industrial forming processes. Comput Mech 54, 85–107 (2014). https://doi.org/10.1007/s00466-014-1016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1016-2

Keywords

Navigation