Skip to main content
Log in

Possibilities of the particle finite element method for fluid–soil–structure interaction problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid–soil–structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid–solid and solid–solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8): 981–988

    Article  Google Scholar 

  2. Aubry R, Idelsohn SR, Oñate E (2005) Particle finite element method in fluid mechanics including thermal convection-diffusion. Comput Struct 83(17–18): 1459–1475

    Article  Google Scholar 

  3. Badia S, Codina R (2009) On a multiscale approach to the transient Stokes problem transient subscales and anisotropic space–time discretizations. Appl Math Comput 207: 415–423

    Article  MathSciNet  MATH  Google Scholar 

  4. Baiges J, Codina R (2010) The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems. Int J Numer Methods Eng 81: 1529–1557

    MathSciNet  MATH  Google Scholar 

  5. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comp Methods Appl Mech Eng 197: 173–201

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mechan 46: 3–16

    Article  MathSciNet  MATH  Google Scholar 

  7. Carbonell JM, Oñate E, Suárez B (2010) Modeling of ground excavation with the particle finite element method. J Eng Mechan (ASCE) 136(4): 455–463

    Article  Google Scholar 

  8. Codina R (2002) Stabilized finite element approximation of transient incompressible flows using subscales. Comput Methods Appl Mech Eng 191: 4295–4321

    Article  MathSciNet  MATH  Google Scholar 

  9. Codina R, Coppola-Owen H, Nithiarasu P, Liu CB (2006) Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier–Stokes equations. Int J Numer Methods Eng 66: 1672–1689

    Article  MathSciNet  MATH  Google Scholar 

  10. Del Pin F, Idelsohn SR, Oñate E, Aubry R (2007) The ALE/Lagrangian particle finite element method: a new approach to computation of free-surface flows and fluid–object interactions. Comput Fluids 36: 27–38

    Article  MATH  Google Scholar 

  11. Donea J, Huerta A (2003) Finite element method for flow problems. Wiley, Chichester

    Book  Google Scholar 

  12. Edelsbrunner H, Mucke EP (1999) Three dimensional alpha shapes. ACM Trans Graphics 13: 43–72

    Article  Google Scholar 

  13. Fritz HM, Hager WH, Minor HE (2001) Lituya Bay case: rockslide impact and wave run-up. Sci Tsunami Hazards 19(1): 3–22

    Google Scholar 

  14. Fritz HM, Hager WH, Minor HE (2004) Near field characteristics of landslide generated impulse waves. J Waterway Port Coast Ocean Eng ASCE 130(6): 287–302

    Article  Google Scholar 

  15. García J, Oñate E (2003) An unstructured finite element solver for ship hydrodynamic problems. J Appl Mech 70: 18–26

    Article  MATH  Google Scholar 

  16. Idelsohn SR, Oñate E, Del Pin F, Calvo N (2002) Lagrangian formulation: the only way to solve some free-surface fluid mechanics problems. In: Mang HA, Rammerstorfer FG, Eberhardsteiner J (eds) 5th World Congress on Comput Mechanics, July 7–12, Vienna, Austria

  17. Idelsohn SR, Oñate E, Calvo N, Del Pin F (2003) The meshless finite element method. Int J Numer Methods Eng 58(6): 893–912

    Article  MATH  Google Scholar 

  18. Idelsohn SR, Oñate E, Del Pin F (2003) A lagrangian meshless finite element method applied to fluid–structure interaction problems. Comput Struct 81: 655–671

    Article  Google Scholar 

  19. Idelsohn SR, Calvo N, Oñate E (2003) Polyhedrization of an arbitrary point set. Comput Methods Appl Mech Eng 192(22–24): 2649–2668

    Article  MATH  Google Scholar 

  20. Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61: 964–989

    Article  MATH  Google Scholar 

  21. Idelsohn SR, Oñate E, Del Pin F, Calvo N (2006) Fluid–structure interaction using the particle finite element method. Comput Methods Appl Mech Eng 195: 2100–2113

    Article  MATH  Google Scholar 

  22. Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197: 1762–1776

    Article  MATH  Google Scholar 

  23. Idelsohn SR, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198: 2750–2767

    Article  Google Scholar 

  24. Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3-D flow simulations. Comput Mech 23: 130–143

    Article  MATH  Google Scholar 

  25. Kovacs A, Parker G (1994) A new vectorial bedload formulation and its application to the time evolution of straight river channels. J Fluid Mech 267: 153–183

    Article  MATH  Google Scholar 

  26. Larese A, Rossi R, Oñate E, Idelsohn SR (2008) Validation of the particle finite element method (PFEM) for simulation of free surface flows. Eng Comput 25(4): 385–425

    Article  Google Scholar 

  27. Löhner R (2008) Applied CFD techniques. Wiley, Chichester

    Google Scholar 

  28. Löhner R, Yang C, Oñate E (2007) Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int J Numer Methods Fluids 153: 1315–1338

    Article  Google Scholar 

  29. Oñate E (1998) Derivation of stabilized equations for advective–diffusive transport and fluid flow problems. Comput Methods Appl Mech Eng 151: 233–267

    Article  MATH  Google Scholar 

  30. Oñate E (2004) Possibilities of finite calculus in computational mechanics. Int J Numer Methods Eng 60(1): 255–281

    Article  MATH  Google Scholar 

  31. Oñate E, García J (2001) A finite element method for fluid–structure interaction with surface waves using a finite calculus formulation. Comput Methods Appl Mech Eng 191: 635–660

    Article  MATH  Google Scholar 

  32. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method: an overview. Int J Comput Methods 1(2): 267–307

    Article  MATH  Google Scholar 

  33. Oñate E, Valls A, García J (2006) FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynold’s numbers. Comput Mechan 38(4–5): 440–455

    Article  MATH  Google Scholar 

  34. Oñate E, García J, Idelsohn SR, Del Pin F (2006) FIC formulations for finite element analysis of incompressible flows Eulerian, ALE and Lagrangian approaches. Comput Methods Appl Mech Eng 195(23–24): 3001–3037

    Article  MATH  Google Scholar 

  35. Oñate E, Celigueta MA, Idelsohn SR (2006) Modeling bed erosion in free surface flows by the particle finite element method. Acta Geotechnia 1(4): 237–252

    Article  Google Scholar 

  36. Oñate E, Idelsohn SR, Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid–multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197(19–20): 1777–1800

    Article  MATH  Google Scholar 

  37. Oñate E, Rossi R, Idelsohn SR, Butler K (2010) Melting and spread of polymers in fire with the particle finite element method. Int J Numer Methods Eng 81(8): 1046–1072

    MATH  Google Scholar 

  38. Oñate E, Salazar F, Morán R (2011) Modeling of landslides into reservoir with the particle finite element method. Research Report CIMNE No. PI355. Submitted to Int J Numer Methods Geomechan

  39. Salazar F, Oñate E, Morán R (2011) Modelación numérica de deslizamientos de ladera en embalses mediante el método de partículas y elementos finitos (PFEM). Rev Int Mét Num Cálc Dis Ing. Accepted for publication

  40. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mechan. doi:10.1007/s00466-011-0571-z

  41. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput Methods Appl Mech Eng 95: 221–242

    Article  MATH  Google Scholar 

  42. Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution techniques. Comput Fluids 36: 207–223

    Article  MathSciNet  MATH  Google Scholar 

  43. Wan CF, Fell R (2004) Investigation of erosion of soils in embankment dams. J Geotechn Geoenviron Eng 130: 373–380

    Article  Google Scholar 

  44. Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban Grids: an overview. Int J Numer Methods Fluids 54: 841–853

    Article  MathSciNet  MATH  Google Scholar 

  45. Zienkiewicz OC, Jain PC, Oñate E (1978) Flow of solids during forming and extrusion: some aspects of numerical solutions. Int J Solids Struct 14: 15–38

    Article  Google Scholar 

  46. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method. Its basis and fundamentals. Elsevier, Oxford

    Google Scholar 

  47. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Elsevier, Oxford

    MATH  Google Scholar 

  48. Zienkiewicz OC, Taylor RL, Nithiarasu P (2006) The finite element method for fluid dynamics. Elsevier, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Oñate.

Additional information

S. R. Idelsohn is a ICREA Professor at CIMNE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oñate, E., Celigueta, M.A., Idelsohn, S.R. et al. Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Comput Mech 48, 307–318 (2011). https://doi.org/10.1007/s00466-011-0617-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0617-2

Keywords

Navigation