Skip to main content
Log in

A mutation in class III homeodomain-leucine zipper (HD-ZIP III) transcription factor results in curly leaf (cul) in cucumber (Cucumis sativus L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We identified two curly-leaf (cul) mutants in cucumber. Map-based cloning revealed that both mutants are due to allelic mutations in the CsPHB gene, a homolog of the Arabidopsis PHABULOSA which encodes a class III homeodomain-leucine zipper (HD-ZIP III) transcription factor.

Abstract

Leaf rolling is an important agronomic trait in crop breeding. Moderate leaf rolling minimizes shadowing between leaves, leading to improved photosynthetic efficiency. Although a number of genes controlling rolled leaf have been identified from rice and other plant species, none have been mapped or cloned in cucurbit crops. In this study, we identified and characterized two curly leaf (cul) mutants, cul-1 and cul-2 in cucumber. With map-based cloning, we show that cul-1 and cul-2 are allelic mutations and CsPHB (Csa6G525430) was the candidate gene for both mutants. The CsPHB gene encoded a class III homeodomain-leucine zipper (HD-ZIP III) transcription factor. A single non-synonymous mutation in the fourth and fifth exons of the CsPHB was responsible for the cul-1 and cul-2 mutant phenotypes, respectively. The single-nucleotide substitutions in cul-1 and cul-2 were both located in cs-miRNA165/166 complementary sites of CsPHB. The expression level of CsPHB gene in multiple organs of cul-1 and cul-2 mutants was higher than that in the wild type, while the expression of cs-miRNA165/166 in the two genotypes showed the opposite trend. We speculate that disruption of the binding between the mutant allele of CsPHB and cs-miRNA165/166 leads to the curly-leaf phenotype. This is the first report to clone and characterize the CsPHB gene in the family Cucurbitaceae. Taken together, these results support CsPHB as an important player in the modulation of leaf shape development in cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alamin M, Zeng D-D, Qin R, Sultana MH, Jin X-L, Shi C-H (2017) Characterization and fine mapping of sfl1, a gene controlling screw flag leaf in rice. Plant Mol Biol Report 35:491–503

    Article  CAS  Google Scholar 

  • An R, Liu X, Wang R, Wu H, Liang S, Shao J, Qi Y, An L, Yu F (2014) The over-expression of two transcription factors, ABS5/bHLH30 and ABS7/MYB101, leads to upwardly curly leaves. PLoS ONE 9:e107637

    Article  PubMed  PubMed Central  Google Scholar 

  • Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12:419–426

    Article  CAS  PubMed  Google Scholar 

  • Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7:653–662

    Article  CAS  PubMed  Google Scholar 

  • Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17:170–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL (2004) Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity. BioEssays 26:938–942

    Article  CAS  PubMed  Google Scholar 

  • Breuninger H, Lenhard M (2010) Control of tissue and organ growth in plants. Curr Top Dev Biol 91:185–220

    Article  CAS  PubMed  Google Scholar 

  • Byrne ME (2012) Making leaves. Curr Opin Plant Biol 15:24–30

    Article  CAS  PubMed  Google Scholar 

  • Chen CF, Ridzon DA, Broomer AJ, Zhou ZH, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zuo S, Zhang Y, Li L, Pan X, Ma Y (2010) Current progress in genetics research and breeding application of rolled leaf in rice. J Yangzhou Univ Agri Life Sci Ed 31:22–27

    CAS  Google Scholar 

  • Chen FF, Fu BB, Pan YP, Zhang CW, Wen HF, Weng YQ, Chen P, Li YH (2017) Fine mapping identifies CsGCN5 encoding a histone acetyltransferase as putative candidate gene for tendril-less1 mutation (td-1) in cucumber. Theor Appl Genet 130:1549–1558

    Article  CAS  PubMed  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Q, Wang H (2015) The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation. Plant Signal Behav 10:e1078955

    Article  PubMed  PubMed Central  Google Scholar 

  • Elhiti M, Stasolla C (2009) Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signal Behav 4:86–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  CAS  PubMed  Google Scholar 

  • Fukushima K, Hasebe M (2014) Adaxial-abaxial polarity: the developmental basis of leaf shape diversity. Genesis 52:1–18

    Article  PubMed  Google Scholar 

  • Grigg SP, Canales C, Hay A, Tsiantis M (2005) SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature 437:1022–1026

    Article  CAS  PubMed  Google Scholar 

  • Ha CM, Jun JH, Fletcher JC (2010) Shoot apical meristem form and function. Curr Top Dev Biol 91:103–140

    Article  CAS  PubMed  Google Scholar 

  • Hawker NP, Bowman JL (2004) Roles for class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol 135:2261–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W, Lucas WJ, Wang XW et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1229–1275

    Google Scholar 

  • Itoh JI, Hibara KI, Sato Y, Nagato Y (2008) Developmental role and auxin responsiveness of class III homeodomain leucine zipper gene family members in rice. Plant Physiol 147:1960–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen SE, Running MP, Meyerowitz EM (1999) Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126:5231–5243

    CAS  PubMed  Google Scholar 

  • Juarez MT (2004) Dorsoventral patterning of maize lateral organs: [D]. State University of New York, Stony Brook

    Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004a) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  PubMed  Google Scholar 

  • Juarez MT, Twigg RW, Timmermans MCP (2004b) Specification of adaxial cell fate during maize leaf development. Development 131:4533–4544

    Article  CAS  PubMed  Google Scholar 

  • Kadioglu A, Saruhan N, Saglam A, Terzi R, Acet T (2011) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul 64:27–37

    Article  CAS  Google Scholar 

  • Kumari G, Kusumanjali K, Srivastava PS, Das S (2013) Isolation and expression analysis of miR165a and REVOLUTA from Brassica species. Acta Physiol Plant 35:399–410

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LC, Kang DM, Chen ZL, Qu LJ (2007) Hormonal regulation of leaf morphogenesis in Arabidopsis. J Integr Plant Biol 49:75–80

    Article  CAS  Google Scholar 

  • Li YH, Yang LM, Pathak M, Li DW, He XM, Weng Y (2011) Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123:973–983

    Article  PubMed  Google Scholar 

  • Li WQ, Zhang MJ, Gan PF, Qiao L, Yang SQ, Miao H, Wang GF, Zhang MM, Liu WT, Li HF, Shi CH, Chen KM (2017) CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. Plant J 92:904–923

    Article  CAS  PubMed  Google Scholar 

  • Liao QS, Tu YF, Carr JP, Du ZY (2015) An improved cucumber mosaic virus-based vector for efficient decoying of plant microRNAs. Sci Rep 5:13178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(− Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232

    Article  CAS  PubMed  Google Scholar 

  • Ma YH, Zhao Y, Shangguan XX, Shi SJ, Zeng Y, Wu Y, Chen RZ, You AQ, Zhu LL, Du B, He GC (2017) Overexpression of OsRRK1 changes leaf morphology and defense to insect in rice. Front Plant Sci 8:1783

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang GL, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao WH, Li ZY, Xia XJ, Li YD, Yu JQ (2012) A Combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber. PLoS ONE 7:e33040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125:2935–2942

    CAS  PubMed  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  CAS  PubMed  Google Scholar 

  • Merelo P, Ram H, Pia Caggiano M, Ohno C, Ott F, Straub D, Graeff M, Cho SK, Yang SW, Wenkel S, Heisler MG (2016) Regulation of MIR165/166 by class II and class III homeodomain leucine zipper proteins establishes leaf polarity. Proc Natl Acad Sci USA 113:11973–11978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee K, Burglin TR (2006) MEKHLA, a novel domain with similarity to PAS domains, is fused to plant homeodomain-leucine zipper III proteins. Plant Physiol 140:1142–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochando I, Jover-Gil S, Ripoll JJ, Candela H, Vera A, Ponce MR, Martinez-Laborda A, Micol JL (2006) Mutations in the microRNA complementarity site of the INCURVATA4 gene perturb meristem function and adaxialize lateral organs in Arabidopsis. Plant Physiol 141:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart BJ, Liu T, Newell NR, Magnani E, Huang T, Kerstetter R, Michaels S, Barton MK (2013) Establishing a framework for the Ad/abaxial regulatory network of Arabidopsis: ascertaining targets of class III homeodomain leucine zipper and KANADI regulation. Plant Cell 25:3228–3249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schrick K, Nguyen D, Karlowski WM, Mayer KFX (2004) START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors. Genome Biol 5:R41

    Article  PubMed  PubMed Central  Google Scholar 

  • Sessa G, Steindler C, Morelli G, Ruberti I (1998) The Arabidopsis ATHB-8, -9 and -14 genes are members of a small gene family coding for highly related HD-ZIP proteins. Plant Mol Biol 38:609–622

    Article  CAS  PubMed  Google Scholar 

  • Shwartz I, Levy M, Ori N, Bar M (2016) Hormones in tomato leaf development. Dev Biol 419:132–142

    Article  CAS  PubMed  Google Scholar 

  • Tanurdzic M, Banks JA (2004) Sex-determining mechanisms in land plants. Plant Cell 16:S61–S71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukaya H (1995) Developmental genetics of leaf morphogenesis in dicotyledonous plants. J Plant Res 108:407–416

    Article  Google Scholar 

  • Tsukaya H (2006) Mechanism of leaf-shape determination. Annu Rev Plant Biol 57:477–496

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H (2013) Leaf development. In: The Arabidopsis book, pe0163. https://doi.org/10.1199/tab.0163

  • Wan HJ, Zhao ZG, Qian CT, Sui YH, Malik AA, Chen JF (2010) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 399:257–261

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Li WQ, Qin YG, Pan YP, Wang XF, Weng Y, Chen P, Li YH (2017) The cytochrome P450 gene CsCYP85A1 is a putative candidate for super compact-1 (Scp-1) plant architecture mutation in cucumber (Cucumis sativus L. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00266

    Article  PubMed  PubMed Central  Google Scholar 

  • Weng Y, Wehner TC (2018) Cucumber gene catalog 2017. Cucurbit Genet Coop Rep 39 & 40(2016–2017):17–54

    Google Scholar 

  • Win KT, Vegas J, Zhang CY, Song K, Lee S (2017) QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods. Theor Appl Genet 130:199–211

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Fu YP, Hu GC, Si HM, Cheng SH, Liu WZ (2010) Isolation and characterization of a rice mutant with narrow and rolled leaves. Planta 232:313–324

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Wang YH, Long QZ, Huang JX, Wang YL, Zhou KN, Zheng M, Sun J, Chen H, Chen SH, Jiang L, Wang CM, Wan JM (2014) Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta 239:803–816

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Yu XH, Shen RJ, He YK (2005) HYL1 gene maintains venation and polarity of leaves. Planta 221:231–242

    Article  CAS  PubMed  Google Scholar 

  • Zhang CH, Zhang BB, Ma RJ, Yu ML, Guo SL, Guo L (2015) Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach. Genet Mol Res 14:14151–14161

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Li Y, Ma L, Sang X, Ling Y, Wang Y, Yu P, Zhuang H, Huang J, Wang N, Zhao F, Zhang C, Yang Z, Fang L, He G (2017) LATERAL FLORET 1 induced the three-florets spikelet in rice. Proc Natl Acad Sci USA 114:9984–9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Chen F, Zhao Z, Hu L, Liu H, Cheng Z, Weng Y, Chen P, Li Y (2018a) Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber (Cucumis sativus L.). Theor Appl Genet 131:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Zhang JS, Zhang H, Srivastava AK, Pan YJ, Bai JJ, Fang JJ, Shi HZ, Zhu JK (2018b) Knockdown of rice MicroRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol 176:2082–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Lin X, Cao W (2001) Comparison of leaf photosynthetic characteristics among rice hybrids with different leaf rolling index. Acta Genet Sin 27:329–333

    Article  Google Scholar 

Download references

Acknowledgements

Work in YL’s laboratory was supported by the National Natural Science Foundation of China (31471891and 31772300). Work in YW’s laboratory was supported by the Agriculture and Food Research Initiative competitive grant no. 2017-67013-26195 of the USDA National Institute of Food and Agriculture. Work in ZC’s laboratory was supported by the National Key R&D Project (2016YFD0101705). Work in DH’s laboratory was supported by the National Natural Science Foundation of China (31860557).

Author information

Authors and Affiliations

Authors

Contributions

FR performed the research and prepared a draft of the manuscript. FC, LH, CZ and JZ participated in the research. ZC and DH provided technical help. YW participated in data analysis and manuscript writing. PC and YL designed the experiments, supervised this study and wrote the manuscript. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Peng Chen or Yuhong Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Michael J. Havey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Morphological characterization of the leaves from the wild type (CCMC/wt, A) and the mutant (C1561/cul-1, B) (PPTX 1730 kb)

Fig. S2

Floral morphological characterization from wild-type (CCMC) and mutant (C1561/cul-1 and C1134/cul-2) plants. A. Heterozygote mutant (C1134/cul-2), female flower (A1, A2), male flower (A3) (bar = 1 cm). B. Homozygote mutant (C1561/cul-1), female flower (B1, B2), male flower (B3) (bar = 1 cm). C. Heterozygote mutant (C1561/cul-1), female flower (C1, C2), male flower (C3) (bar = 1 cm). D. Wild type (CCMC), female flower (D1, D2), male flower (D3) (bar = 1 cm) (PPTX 2846 kb)

Fig. S3

Morphological characterization of leaves and petioles from heterozygote mutant C1561/cul-1 (A), C1134/cul-2 (B) and wild-type CCMC (C) (bar = 1 cm) (PPTX 708 kb)

Fig. S4

Morphological characterization of wild-type and curly-leaf mutant plants in cucumber. A. Curly-leaf mutant (C1561/cul-1), heterozygote. B. Curly-leaf mutant (C1561/cul-1), homozygote. C. Curly-leaf mutant (C1134/cul-2), heterozygote. D. Wild type (bar = 8 cm) (PPTX 2315 kb)

Fig. S5

Genetic mapping of cul-1 and cul-2 loci in cucumber. A. Preliminary mapping with 94 F2 plants of C1561 × 9930 placed cul-1 in Chromosome 6, which was narrowed down to a region of 222 kb through fine mapping (B) with 1135 C1561 × 9930 F2 plants. C. Preliminary mapping with 240 F2 of C1134 × Gy14 also located cul-2 at cucumber Chromosome 6 (PPTX 65 kb)

Fig. S6

CAPS assay of natural cucumber populations with CAPS-C1561-01 derived from the causal SNP (SNP28494600) within the CsPHB candidate gene (PPTX 5253 kb)

Fig. S7

CAPS assay of natural cucumber populations with dCAPS-C1134-01 derived from the causal SNP (SNP28494713) within the CsPHB candidate gene (PPTX 3996 kb)

Fig. S8

Domain structure of CsPHB which is typically comprising of the homeobox, bzip, start and mekhla domains. Amino acid substitution from G in wild type to E in the C1134 mutant (a) and from P in wild type to L in the C1561 mutant (b) (PPTX 33 kb)

Supplementary material 9 (XLSX 31 kb)

Supplementary material 10 (PDF 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, F., Chen, F., Huang, L. et al. A mutation in class III homeodomain-leucine zipper (HD-ZIP III) transcription factor results in curly leaf (cul) in cucumber (Cucumis sativus L.). Theor Appl Genet 132, 113–123 (2019). https://doi.org/10.1007/s00122-018-3198-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3198-z

Navigation