Skip to main content
Log in

QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

QTL mapping using NGS-assisted BSA was successfully applied to an F 2 population for downy mildew resistance in cucumber. QTLs detected by NGS-assisted BSA were confirmed by conventional QTL analysis.

Abstract

Downy mildew (DM), caused by Pseudoperonospora cubensis, is one of the most destructive foliar diseases in cucumber. QTL mapping is a fundamental approach for understanding the genetic inheritance of DM resistance in cucumber. Recently, many studies have reported that a combination of bulked segregant analysis (BSA) and next-generation sequencing (NGS) can be a rapid and cost-effective way of mapping QTLs. In this study, we applied NGS-assisted BSA to QTL mapping of DM resistance in cucumber and confirmed the results by conventional QTL analysis. By sequencing two DNA pools each consisting of ten individuals showing high resistance and susceptibility to DM from a F2 population, we identified single nucleotide polymorphisms (SNPs) between the two pools. We employed a statistical method for QTL mapping based on these SNPs. Five QTLs, dm2.2, dm4.1, dm5.1, dm5.2, and dm6.1, were detected and dm2.2 showed the largest effect on DM resistance. Conventional QTL analysis using the F2 confirmed dm2.2 (R 2 = 10.8–24 %) and dm5.2 (R 2 = 14–27.2 %) as major QTLs and dm4.1 (R 2 = 8 %) as two minor QTLs, but could not detect dm5.1 and dm6.1. A new QTL on chromosome 2, dm2.1 (R 2 = 28.2 %) was detected by the conventional QTL method using an F3 population. This study demonstrated the effectiveness of NGS-assisted BSA for mapping QTLs conferring DM resistance in cucumber and revealed the unique genetic inheritance of DM resistance in this population through two distinct major QTLs on chromosome 2 that mainly harbor DM resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Arends D, Prins P, Jansen RC, Broman KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker A, Chao DY, Zhang X, Salt DE, Baxter I (2011) Bulk segregant analysis using single nucleotide polymorphism microarrays. PLoS One 6:e15993

    Article  PubMed  PubMed Central  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Call AD, Criswell AD, Wehner TC et al (2012a) Resistance of cucumber cultivars to a new strain of cucurbit downy mildew. HortSci 47:171–178

    Google Scholar 

  • Call AD, Criswell AD, Wehner TC et al (2012b) Screening cucumber for resistance to downy mildew caused by Pseudoperonospora cubensis (Berk. and Curt.) Rostov. Crop Sci 52:577–592

    CAS  Google Scholar 

  • Catchen J, Amores A, Hohenlohe P, Cresko W, Postlethwait J (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3-Genes Genom Genet 1:171–182

  • Catchen J, Hohenlohe P, Bassham S, Amores A, Cresko W (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22(11):3124–3140

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen JF, Kirkbride JH Jr (2000) A new synthetic species Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia 52:315–319

    Article  Google Scholar 

  • Chen JF, Staub JE, Qian ChT, Jiang JM, Luo XD, Zhuang FY (2003) Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. × Cucumis sativus L. Theor Appl Genet 106:688–695

  • Dhillon NPS, Pushpinder PS, Ishiki K (1999) Evaluation of landraces of cucumber (Cucumis sativus L.) for resistance to downy mildew (Pseudoperonospora cubensis). Plant Genet Resour Newsl 119:59–61

    Google Scholar 

  • Dijkhuizen A (1994) Application of restriction fragment length polymorphism for the assessment of genetic variation and study of quantitatively inherited traits in cucumber (Cucumis sativus L.). Ph.D. Dissertation, University of Wisconsin-Madison, p 123

  • Ding G, Qin Z, Zhou X, Fan J (2007) RAPD and SCAR markers linked to downy mildew resistance genes in cucumber. Acta Bot Boreali-Occident Sin 27:1747–1751 (in Chinese)

    CAS  Google Scholar 

  • Doruchowski RW, Łazkowska-Ryk E (1992) Inheritance of resistance to downy mildew (Pseudoperonospora cubensis Berk. and Curt.) in Cucumis sativus. In: Doruchowski RW (ed) Proceedings of the V Eucarpia Cucurbitaceae Symposium. Skierniewice-Warszawa, Poland, pp 132–138

    Google Scholar 

  • Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S et al (2010) Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464:1039–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epinat C, Pitrat M (1994) Inheritance of resistance to downy mildew (Pseudoperonospora cubensis) in muskmelon (Cucumis melo). I. Analysis of a 8 × 8 diallel table. Agronomie 14:239–248

    Article  Google Scholar 

  • Fanourakis NE (1984) Inheritance and linkage studies of the fruit epidermis structure and investigation of linkage relations of several traits and of meiosis in cucumber. Ph.D. Dissertation, University of Wisconsin-Madison

  • Han Y, Lv P, Hou S, Li S, Ji G, Ma X et al (2015) Combining Next Generation Sequencing with Bulked Segregant Analysis to Fine Map a Stem Moisture Locus in Sorghum (Sorghum bicolor L. Moench). PLoS One 10(5):e0127065. doi:10.1371/journal.pone.0127065

    Article  PubMed  PubMed Central  Google Scholar 

  • He X, Li YH, Pandey S, Yandell BS, Pathak M, Weng Y (2013) QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet 126:2149–2161

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Kaminski KP, Korup K, Andersen MN, Sonderkaer M, Andersen MS, Kirk HG, Nielsen KL (2016) Next generation sequencing bulk segregant analysis of potato support that differential flux into the cholesterol and stigmasterol metabolite pools is important for steroidal glycoalkaloid content. Potato Res 59:81–97

    Article  CAS  Google Scholar 

  • Kozik EU, Klosin´ska U, Call AD, Wehner TC (2013) Heritability and genetic variance estimates for resistance to downy mildew in cucumber accession Ames 2354. Crop Sci 53:177–182

  • Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Sci USA 84:2363–2367

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeda A, Prasil J (1994) Susceptibility of Cucumis sativus cultivars to Pseudoperonospora cubensis. Acta Phytopathol Entomol Hung 29:89–94

    Google Scholar 

  • Lee J-S, Han K-S, Lee S-C, Soh J-W (2013) Screening for resistance to downy mildew among major commercial cucumber varieties. Res Dis 19(3):188–195 (in Korean)

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang Z, Yan P, Huang S, Fei Z, Lin K (2011) RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genom 12:540

    Article  CAS  Google Scholar 

  • Magwene PM, Willis JH, Kelly JK (2011) The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 7:e1002255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer C (2006–2010) Phobos 3.3.11. Available at http://www.rub.de/spezzoo/cm/cm_phobos.htm

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson JC (1997) QGene: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Oerke EC, Steiner U, Dehne HW, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57:2121–2132

    Article  CAS  PubMed  Google Scholar 

  • Olczak-Woltman H, Marcinkowska J, Niemirowicz-Szczytt K (2011) The genetic basis of resistance to downy mildew in Cucumis spp.—latest developments and prospects. J Appl Genetics 52:249–255

    Article  Google Scholar 

  • Palti J, Cohen Y (1980) Downy mildew of cucurbits (Pseudoperonospora cubensis). The fungus and its hosts, distribution, epidemiology and control. Phytoparasitica 8:109–147

    Article  Google Scholar 

  • Pang X, Zhou X, Wan H, Chen J (2013) QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J Phytopathol 161:536–543

    Article  Google Scholar 

  • Ren Y, Zhang Z, Liu J et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4:e5795

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Rubinstein M, Katzenellenbogen M, Eshed R, Rozen A, Katzir N, Colle M et al (2015) Ultra high-density linkage map for cultivated cucumber using a single nucleotide polymorphism genotyping array. PLoS One 10:e0124101

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen J-E, Weigel D, Andersen SU (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Kanazawa K, Kato A, Yokota Y, Koyama T (1963) Studies on the breeding of cucumber for resistance to downy mildew. Part 3. Genetic observations for the resistance to downy mildew and other fruit characters. Bull Hort Res Sta A 2:65–81 (in Japanese with English abstract)

    Google Scholar 

  • Sun JY, Zhang ZH, Zong X, Huang SW, Li ZY, Han YH (2013) A high-resolution cucumber cytogenetic map integrated with the genome assembly. BMC Genom 14:461

    Article  CAS  Google Scholar 

  • Szczechura W, Staniaszek M, Klosinska U, Kozik EU (2015) Molecular analysis of new sources of resistance to Pseudoperonospora cubensis (Berk. et Curt.) Rostov. in cucumber. Russian J Genet 51:974–979

    Article  CAS  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S et al (2013) QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J (on line first). doi:10.1111/tpj.12105

    Google Scholar 

  • Trick M, Adamski NM, Mugford SG, Jiang C-C, Febrer M, Uauy C (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploidy wheat. BMC Plant Biol 12:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenlangenberg KM (2015) Studies on downy mildew resistance in cucumber (Cucumis sativus L.). Ph.D. Dissertation, University of North Carolina State University

  • Wang Y, VandenLangenberg K, Wehner TC, Kraan PAG, Suelmann J, Zheng X, Owens K, Weng Y (2016) QTL mapping for downy mildew resistance in cucumber inbreed line W17120 (PI 330628). Theor Appl Genet. doi:10.1007/s00122-016-2719-x

    PubMed Central  Google Scholar 

  • Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J et al (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genom 15:1158. doi:10.1186/1471-2164-15-1158

    Article  Google Scholar 

  • Wenger JW, Schwartz K, Sherlock G (2010) Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 6(5):e1000942

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolyn DJ, Borevitz JO, Loudet O, Schwartz C, Maloof J et al (2004) Light-response quantitative trait loci identified with composite interval and eXtreme array mapping in Arabidopsis thaliana. Genetics 167:907–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Huang D, Tang W, Zheng Y, Liang K et al (2013) Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLoS One 8(7):e68433. doi:10.1371/journal.pone.0068433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka Y, Sakata Y, Sugiyama M, Fukino N (2014) Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 198:265–276

    Article  CAS  Google Scholar 

  • Zhang WW, Pan JS, He HL, Zhang C, Li Z, Zhao JL, Yuan XJ, Zhu LH, Huang SW, Cai R (2012) Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet 124:249–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Liu MM, Miao H et al (2013) Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis 97:245–251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Bio-industry Technology Development Program (111057-5) of iPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyeob Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Funding

This work was supported by grants from the Bio-industry Technology Development Program (111057-5) of iPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry).

Additional information

Communicated by H. J. van Eck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 819 kb)

Supplementary material 2 (PDF 606 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Win, K.T., Vegas, J., Zhang, C. et al. QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods. Theor Appl Genet 130, 199–211 (2017). https://doi.org/10.1007/s00122-016-2806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2806-z

Keywords

Navigation