Skip to main content
Log in

Phenomenology of light fermionic asymmetric dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Asymmetric dark matter (ADM) has been an attractive possibility attempting to explain the observed ratio of baryon to dark matter abundance in the universe. While a bosonic ADM is constrained by the limits from existence of old neutron stars, a fermionic ADM requires an additional light particle in order to annihilate its symmetric component in the early universe. We revisit the phenomenology of a minimal GeV scale fermionic ADM model including a light scalar state. The current constraints on this scenario from cosmology, dark matter direct detection, flavour physics and collider searches are investigated in detail. We estimate the future reach on the model parameter space from next-generation dark matter direct detection experiments, Higgs boson property measurements and search for light scalars at the LHC, as well as the determination of Higgs invisible branching ratio at the proposed ILC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

  4. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  5. T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Workshop on unified theory and baryon number in the universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba, Japan (1979).

  6. P. Ramond, The family group in grand unified theories, talk given in Sanibel Symposium, February 25-March 2, Palm Coast, U.S.A. (1979), hep-ph/9809459 [INSPIRE].

  7. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  9. W. Buchmüller, R. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Ibe, S. Matsumoto and T.T. Yanagida, The GeV-scale dark matter with B-L asymmetry, Phys. Lett. B 708 (2012) 112 [arXiv:1110.5452] [INSPIRE].

    Article  ADS  Google Scholar 

  12. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].

    ADS  Google Scholar 

  13. K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Nussinov, Technocosmology: could a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].

    Article  ADS  Google Scholar 

  15. M.Y. Khlopov and C. Kouvaris, Composite dark matter from a model with composite Higgs boson, Phys. Rev. D 78 (2008) 065040 [arXiv:0806.1191] [INSPIRE].

    ADS  Google Scholar 

  16. Y. Bai and P. Schwaller, The scale of dark QCD, arXiv:1306.4676 [INSPIRE].

  17. S.D. McDermott, H.-B. Yu and K.M. Zurek, Constraints on scalar asymmetric dark matter from black hole formation in neutron stars, Phys. Rev. D 85 (2012) 023519 [arXiv:1103.5472] [INSPIRE].

    ADS  Google Scholar 

  18. C. Kouvaris and P. Tinyakov, Excluding light asymmetric bosonic dark matter, Phys. Rev. Lett. 107 (2011) 091301 [arXiv:1104.0382] [INSPIRE].

    Article  ADS  Google Scholar 

  19. C. Kouvaris, Limits on self-interacting dark matter, Phys. Rev. Lett. 108 (2012) 191301 [arXiv:1111.4364] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via leptogenesis and dark sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M.R. Buckley and L. Randall, Xogenesis, JHEP 09 (2011) 009 [arXiv:1009.0270] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M.L. Graesser, I.M. Shoemaker and L. Vecchi, Asymmetric WIMP dark matter, JHEP 10 (2011) 110 [arXiv:1103.2771] [INSPIRE].

    Article  ADS  Google Scholar 

  24. Y. Cui, L. Randall and B. Shuve, Emergent dark matter, baryon and lepton numbers, JHEP 08 (2011) 073 [arXiv:1106.4834] [INSPIRE].

    Article  ADS  Google Scholar 

  25. D. Aristizabal Sierra, J.F. Kamenik and M. Nemevšek, Implications of flavor dynamics for fermion triplet leptogenesis, JHEP 10 (2010) 036 [arXiv:1007.1907] [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Lin, H.-B. Yu and K.M. Zurek, On symmetric and asymmetric light dark matter, Phys. Rev. D 85 (2012) 063503 [arXiv:1111.0293] [INSPIRE].

    ADS  Google Scholar 

  27. S. Baek, P. Ko, W.-I. Park and E. Senaha, Vacuum structure and stability of a singlet fermion dark matter model with a singlet scalar messenger, JHEP 11 (2012) 116 [arXiv:1209.4163] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. March-Russell, J. Unwin and S.M. West, Closing in on asymmetric dark matter I: model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].

    Google Scholar 

  31. XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  32. TEXONO collaboration, S. Lin et al., New limits on spin-independent and spin-dependent couplings of low-mass WIMP dark matter with a germanium detector at a threshold of 220 eV, Phys. Rev. D 79 (2009) 061101 [arXiv:0712.1645] [INSPIRE].

    ADS  Google Scholar 

  33. H. Iminniyaz, M. Drees and X. Chen, Relic abundance of asymmetric dark matter, JCAP 07 (2011) 003 [arXiv:1104.5548] [INSPIRE].

    Article  ADS  Google Scholar 

  34. H. Ohki et al., Nucleon sigma term and strange quark content in 2 + 1-flavor QCD with dynamical overlap fermions, PoS(LAT2009)124 [arXiv:0910.3271] [INSPIRE].

  35. S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].

    ADS  Google Scholar 

  36. XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [arXiv:1104.3088] [INSPIRE].

    Article  ADS  Google Scholar 

  37. CRESST-Collaboration collaboration, M. Bravin et al., The CRESST dark matter search, Astropart. Phys. 12 (1999) 107 [hep-ex/9904005] [INSPIRE].

    Article  ADS  Google Scholar 

  38. OPAL collaboration, G. Abbiendi et al., Decay mode independent searches for new scalar bosons with the OPAL detector at LEP, Eur. Phys. J. C 27 (2003) 311 [hep-ex/0206022] [INSPIRE].

    Article  ADS  Google Scholar 

  39. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  40. S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].

    Article  ADS  Google Scholar 

  41. R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure Higgs boson couplings?, Phys. Rev. D 86 (2012) 095001 [arXiv:1206.3560] [INSPIRE].

    ADS  Google Scholar 

  42. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  43. C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011) 298 [arXiv:1106.3097] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    Article  ADS  Google Scholar 

  45. ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).

  46. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults.

  47. CMS collaboration, Measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).

  48. http://cms.web.cern.ch/org/cms-higgs-results.

  49. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, New Higgs interactions and recent data from the LHC and the Tevatron, JHEP 10 (2012) 062 [arXiv:1207.3588] [INSPIRE].

    Article  ADS  Google Scholar 

  50. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].

  51. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections.

  52. A. Falkowski, F. Riva and A. Urbano, Higgs at last, arXiv:1303.1812 [INSPIRE].

  53. P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].

  54. A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, arXiv:1303.6591 [INSPIRE].

  55. CMS collaboration, Search for a light pseudoscalar Higgs boson in the dimuon decay channel in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 121801 [arXiv:1206.6326] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M. Spira, HIGLU: a program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].

  57. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  58. CMS collaboration, Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states, arXiv:1210.7619 [INSPIRE].

  59. CLEO collaboration, W. Love et al., Search for very light CP-odd higgs boson in radiative decays of Υ(S − 1), Phys. Rev. Lett. 101 (2008) 151802 [arXiv:0807.1427] [INSPIRE].

    Article  ADS  Google Scholar 

  60. BaBar collaboration, J. Lees et al., Search for a low-mass scalar Higgs boson decaying to a τ pair in single-photon decays of Υ(1S), arXiv:1210.5669 [INSPIRE].

  61. J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].

    ADS  Google Scholar 

  62. M.E. Peskin, Comparison of LHC and ILC capabilities for Higgs boson coupling measurements, arXiv:1207.2516 [INSPIRE].

  63. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings at a linear collider, Europhys. Lett. 101 (2013) 51001 [arXiv:1301.1322] [INSPIRE].

    Article  ADS  Google Scholar 

  64. T. Behnke et al., The International Linear Collider technical design report. Volume 1: executive summary, arXiv:1306.6327 [INSPIRE].

  65. A. Ishikawa Search for invisible Higgs decays at the ILC, at ECFA, Linear Collider Workshop, May 27-31, DESY, Germany (2013).

  66. A. Ishikawa, private communication.

  67. M. Lisanti and J.G. Wacker, Discovering the Higgs with low mass muon pairs, Phys. Rev. D 79 (2009) 115006 [arXiv:0903.1377] [INSPIRE].

    ADS  Google Scholar 

  68. M. Carena, T. Han, G.-Y. Huang and C.E. Wagner, Higgs signal for haa at hadron colliders, JHEP 04 (2008) 092 [arXiv:0712.2466] [INSPIRE].

    Article  ADS  Google Scholar 

  69. XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, arXiv:1206.6288 [INSPIRE].

  70. DARWIN Consortium collaboration, L. Baudis, DARWIN: dark matter WIMP search with noble liquids, J. Phys. Conf. Ser. 375 (2012) 012028 [arXiv:1201.2402] [INSPIRE].

    Article  ADS  Google Scholar 

  71. CDEX-TEXONO collaboration, Q. Yue and H.T. Wong, Dark Matter Search with sub-keV Germanium Detectors at the China Jinping Underground Laboratory, J. Phys. Conf. Ser. 375 (2012) 042061 [arXiv:1201.5373] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayan Mukhopadhyay.

Additional information

ArXiv ePrint: 1306.5878

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacherjee, B., Matsumoto, S., Mukhopadhyay, S. et al. Phenomenology of light fermionic asymmetric dark matter. J. High Energ. Phys. 2013, 32 (2013). https://doi.org/10.1007/JHEP10(2013)032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)032

Keywords

Navigation