Skip to main content
Log in

Asymmetric WIMP dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In existing dark matter models with global symmetries the relic abundance of dark matter is either equal to that of anti-dark matter (thermal WIMP), or vastly larger, with essentially no remaining anti-dark matter (asymmetric dark matter). By exploring the consequences of a primordial asymmetry on the coupled dark matter and anti-dark matter Boltzmann equations we find large regions of parameter space that interpolate between these two extremes. Interestingly, this new asymmetric WIMP framework can accommodate a wide range of dark matter masses and annihilation cross sections. The present-day dark matter population is typically asymmetric, but only weakly so, such that indirect signals of dark matter annihilation are not completely suppressed. We apply our results to existing models, noting that upcoming direct detection experiments will constrain a large region of the relevant parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sakharov, Violation of CP Invariance, c Asymmetry and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [ inSPIRE].

    Google Scholar 

  2. D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M. Nolta, et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [ inSPIRE].

    Article  ADS  Google Scholar 

  3. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [ inSPIRE].

    ADS  Google Scholar 

  4. S. Dodelson and L.M. Widrow, Baryon-symmetric baryogenesis, Phys. Rev. Lett. 64 (1990) 340 [ inSPIRE].

    Article  ADS  Google Scholar 

  5. D.B. Kaplan, A Single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [ inSPIRE].

    Article  ADS  Google Scholar 

  6. S.D. Thomas, Baryons and dark matter from the late decay of a supersymmetric condensate, Phys. Lett. B 356 (1995) 256 [hep-ph/9506274] [ inSPIRE].

    ADS  Google Scholar 

  7. K. Enqvist and J. McDonald, B-ball baryogenesis and the baryon to dark matter ratio, Nucl. Phys. B 538 (1999) 321 [hep-ph/9803380] [ inSPIRE].

    Article  ADS  Google Scholar 

  8. R. Kitano and I. Low, Grand unification, dark matter, baryon asymmetry and the small scale structure of the universe, hep-ph/0503112 [ inSPIRE].

  9. I.M. Shoemaker and A. Kusenko, Gravitino dark matter from Q-ball decays, Phys. Rev. D 80 (2009) 075021 [arXiv:0909.3334] [ inSPIRE].

    ADS  Google Scholar 

  10. H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: A Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [ inSPIRE].

    Article  ADS  Google Scholar 

  11. R. Allahverdi, B. Dutta and K. Sinha, Baryogenesis and Late-Decaying Moduli, Phys. Rev. D 82 (2010) 035004 [arXiv:1005.2804] [ inSPIRE].

    ADS  Google Scholar 

  12. T.R. Dulaney, P. Fileviez Perez and M.B. Wise, Dark Matter, Baryon Asymmetry and Spontaneous B and L Breaking, Phys. Rev. D 83 (2011) 023520 [arXiv:1005.0617] [ inSPIRE].

    ADS  Google Scholar 

  13. J. McDonald, Baryomorphosis: Relating the Baryon Asymmetry to the ’WIMP Miracle’, arXiv:1009.3227 [ inSPIRE].

  14. P.-H. Gu, M. Lindner, U. Sarkar and X. Zhang, WIMP Dark Matter and Baryogenesis, Phys. Rev. D 83 (2011) 055008 [arXiv:1009.2690] [ inSPIRE].

    ADS  Google Scholar 

  15. S. Nussinov, Technocosmology: Could A Technibaryon Excess Provide A ’natural’ Missing Mass Candidate?, Phys. Lett. B 165 (1985) 55 [ inSPIRE].

    ADS  Google Scholar 

  16. S.M. Barr, R. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [ inSPIRE].

    ADS  Google Scholar 

  17. D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the Omega(b)/Omega(DM) puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [ inSPIRE].

    ADS  Google Scholar 

  18. J. Shelton and K.M. Zurek, Darkogenesis: A baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010) 123512 [arXiv:1008.1997] [ inSPIRE].

    ADS  Google Scholar 

  19. J.J. Heckman and S.-J. Rey, Baryon and Dark Matter Genesis from Strongly Coupled Strings, JHEP 06 (2011) 120 [arXiv:1102.5346] [ inSPIRE].

    Article  ADS  Google Scholar 

  20. T. Cohen and K.M. Zurek, Leptophilic Dark Matter from the Lepton Asymmetry, Phys. Rev. Lett. 104 (2010) 101301 [arXiv:0909.2035] [ inSPIRE].

    Article  ADS  Google Scholar 

  21. A. Fitzpatrick, D. Hooper and K.M. Zurek, Implications of CoGeNT and DAMA for Light WIMP Dark Matter, Phys. Rev. D 81 (2010) 115005 [arXiv:1003.0014] [ inSPIRE].

    ADS  Google Scholar 

  22. M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via Leptogenesis and Dark Sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [ inSPIRE].

    Article  ADS  Google Scholar 

  23. L.J. Hall, J. March-Russell and S.M. West, A Unified Theory of Matter Genesis: Asymmetric Freeze-In, arXiv:1010.0245 [ inSPIRE].

  24. R. Allahverdi, B. Dutta and K. Sinha, Cladogenesis: Baryon-Dark Matter Coincidence from Branchings in Moduli Decay, Phys. Rev. D 83 (2011) 083502 [arXiv:1011.1286] [ inSPIRE].

    ADS  Google Scholar 

  25. E.J. Chun, Minimal Dark Matter and Leptogenesis, JHEP 03 (2011) 098 [arXiv:1102.3455] [ inSPIRE].

    Article  ADS  Google Scholar 

  26. Y. Cai, M.A. Luty and D.E. Kaplan, Leptonic Indirect Detection Signals from Strongly Interacting Asymmetric Dark Matter, arXiv:0909.5499 [ inSPIRE].

  27. M.T. Frandsen and S. Sarkar, Asymmetric dark matter and the Sun, Phys. Rev. Lett. 105 (2010) 011301 [arXiv:1003.4505] [ inSPIRE].

    Article  ADS  Google Scholar 

  28. B. Feldstein and A. Fitzpatrick, Discovering Asymmetric Dark Matter with Anti-Neutrinos, JCAP 09 (2010) 005 [arXiv:1003.5662] [ inSPIRE].

    Article  ADS  Google Scholar 

  29. H. An, S.-L. Chen, R.N. Mohapatra, S. Nussinov and Y. Zhang, Energy Dependence of Direct Detection Cross Section for Asymmetric Mirror Dark Matter, Phys. Rev. D 82 (2010) 023533 [arXiv:1004.3296] [ inSPIRE].

    ADS  Google Scholar 

  30. T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric Dark Matter from a GeV Hidden Sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [ inSPIRE].

    ADS  Google Scholar 

  31. B. Dutta and J. Kumar, Asymmetric Dark Matter from Hidden Sector Baryogenesis, Phys. Lett. B 699 (2011) 364 [arXiv:1012.1341] [ inSPIRE].

    ADS  Google Scholar 

  32. C. Kouvaris and P. Tinyakov, Constraining Asymmetric Dark Matter through observations of compact stars, Phys. Rev. D 83 (2011) 083512 [arXiv:1012.2039] [ inSPIRE].

    ADS  Google Scholar 

  33. N. Haba, S. Matsumoto and R. Sato, Sneutrino Inflation with Asymmetric Dark Matter, arXiv:1101.5679 [ inSPIRE].

  34. Z. Kang, J. Li, T. Li, T. Liu and J. Yang, Asymmetric Sneutrino Dark Matter in the NMSSM with Minimal Inverse Seesaw, arXiv:1102.5644 [ inSPIRE].

  35. A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric Dark Matter from Leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [ inSPIRE].

    Article  ADS  Google Scholar 

  36. M.R. Buckley and L. Randall, Xogenesis, JHEP 09 (2011) 009 [arXiv:1009.0270] [ inSPIRE].

    Article  ADS  Google Scholar 

  37. A. Belyaev, M.T. Frandsen, S. Sarkar and F. Sannino, Mixed dark matter from technicolor, Phys. Rev. D 83 (2011) 015007 [arXiv:1007.4839] [ inSPIRE].

    ADS  Google Scholar 

  38. T.A. Ryttov and F. Sannino, Ultra Minimal Technicolor and its Dark Matter TIMP, Phys. Rev. D 78 (2008) 115010 [arXiv:0809.0713] [ inSPIRE].

    ADS  Google Scholar 

  39. E. Nardi, F. Sannino and A. Strumia, Decaying Dark Matter can explain the e + − excesses, JCAP 01 (2009) 043 [arXiv:0811.4153] [ inSPIRE].

    Article  ADS  Google Scholar 

  40. K. Kohri, A. Mazumdar, N. Sahu and P. Stephens, Probing Unified Origin of Dark Matter and Baryon Asymmetry at PAMELA/Fermi, Phys. Rev. D 80 (2009) 061302 [arXiv:0907.0622] [ inSPIRE].

    ADS  Google Scholar 

  41. K. Agashe and G. Servant, Baryon number in warped GUTs: Model building and (dark matter related) phenomenology, JCAP 02 (2005) 002 [hep-ph/0411254] [ inSPIRE].

    Article  ADS  Google Scholar 

  42. G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry of the universe, hep-ph/0406281 [ inSPIRE].

  43. M.Y. Khlopov and C. Kouvaris, Composite dark matter from a model with composite Higgs boson, Phys. Rev. D 78 (2008) 065040 [arXiv:0806.1191] [ inSPIRE].

    ADS  Google Scholar 

  44. T.R. Dulaney, P. Fileviez Perez and M.B. Wise, Dark Matter, Baryon Asymmetry and Spontaneous B and L Breaking, Phys. Rev. D 83 (2011) 023520 [arXiv:1005.0617] [ inSPIRE].

    ADS  Google Scholar 

  45. K. Griest and D. Seckel, Cosmic Asymmetry, Neutrinos and the Sun, Nucl. Phys. B 283 (1987) 681 [ inSPIRE].

    Article  ADS  Google Scholar 

  46. R.J. Scherrer and M.S. Turner, On the Relic, Cosmic Abundance of Stable Weakly Interacting Massive Particles, Phys. Rev. D 33 (1986) 1585 [ inSPIRE].

    ADS  Google Scholar 

  47. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [ inSPIRE].

    ADS  Google Scholar 

  48. P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke, et al., DarkSUSY: Computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [ inSPIRE].

    Article  ADS  Google Scholar 

  49. E.W. Kolb and M.S. Turner, The Early universe, Front. Phys. 69 (1990) 1.

    MathSciNet  ADS  Google Scholar 

  50. WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [ inSPIRE].

    Article  ADS  Google Scholar 

  51. J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion-number violation, Phys. Rev. D 42 (1990) 3344.

    ADS  Google Scholar 

  52. The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [ inSPIRE].

    Article  ADS  Google Scholar 

  53. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. (2011) [arXiv:1104.2549] [ inSPIRE].

  54. M. Drees and M. Nojiri, Neutralino-nucleon scattering revisited, Phys. Rev. D 48 (1993) 3483 [hep-ph/9307208] [ inSPIRE].

    ADS  Google Scholar 

  55. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [ inSPIRE].

    Article  ADS  Google Scholar 

  56. M. Drees and M. Nojiri, Neutralino-nucleon scattering revisited, Phys. Rev. D 48 (1993) 3483 [hep-ph/9307208] [ inSPIRE].

    ADS  Google Scholar 

  57. J. Lewin and P. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [ inSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Shoemaker.

Additional information

ArXiv ePrint: 1103.2771

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graesser, M.L., Shoemaker, I.M. & Vecchi, L. Asymmetric WIMP dark matter. J. High Energ. Phys. 2011, 110 (2011). https://doi.org/10.1007/JHEP10(2011)110

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)110

Keywords

Navigation