Skip to main content
Log in

Emergent dark matter, baryon, and lepton numbers

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a new mechanism for transferring a pre-existing lepton or baryon asymmetry to a dark matter asymmetry that relies on mass mixing which is dynamically induced in the early universe. Such mixing can succeed with only generic scales and operators and can give rise to distinctive relationships between the asymmetries in the two sectors. The mixing eliminates the need for the type of additional higher-dimensional operators that are inherent to many current asymmetric dark matter models. We consider several implementations of this idea. In one model, mass mixing is temporarily induced during a two-stage electroweak phase transition in a two Higgs doublet model. In the other class of models, mass mixing is induced by large field vacuum expectation values at high temperatures — either moduli fields or even more generic kinetic terms. Mass mixing models of this type can readily accommodate asymmetric dark matter masses ranging from 1 GeV to 100TeV and expand the scope of possible relationships between the dark and visible sectors in such models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [SPIRES].

    ADS  Google Scholar 

  2. H. An, S.-L. Chen, R.N. Mohapatra and Y. Zhang, Leptogenesis as a common origin for matter and dark matter, JHEP 03 (2010) 124 [arXiv:0911.4463] [SPIRES].

    Article  ADS  Google Scholar 

  3. E.J. Chun, Leptogenesis origin of Dirac gaugino dark matter, Phys. Rev. D 83 (2011) 053004 [arXiv:1009.0983] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  4. P.-H. Gu, M. Lindner, U. Sarkar and X. Zhang, WIMP dark matter and baryogenesis, arXiv:1009.2690 [SPIRES].

  5. A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [SPIRES].

    Article  ADS  Google Scholar 

  6. Z. Kang, J. Li, T. Li, T. Liu and J. Yang, Asymmetric sneutrino dark matter in the NMSSM with minimal inverse seesaw, arXiv:1102.5644 [SPIRES].

  7. D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Dark atoms: asymmetry and direct detection, arXiv:1105.2073 [SPIRES].

  8. R. Allahverdi, B. Dutta and K. Sinha, Cladogenesis: baryon-dark matter coincidence from branchings in moduli decay, Phys. Rev. D 83 (2011) 083502 [arXiv:1011.1286] [SPIRES].

    ADS  Google Scholar 

  9. N.F. Bell, K. Petraki, I.M. Shoemaker and R.R. Volkas, Pangenesis in a baryon-symmetric universe: dark and visible matter via the Affleck-Dine mechanism, arXiv:1105.3730 [SPIRES].

  10. C. Cheung and K.M. Zurek, Affleck-Dine cogenesis, arXiv:1105.4612 [SPIRES].

  11. S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [SPIRES].

    ADS  Google Scholar 

  12. S. Dodelson and L.M. Widrow, Baryon symmetric baryogenesis, Phys. Rev. Lett. 64 (1990) 340 [SPIRES].

    Article  ADS  Google Scholar 

  13. S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [SPIRES].

    ADS  Google Scholar 

  14. S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev. D 44 (1991) 3062 [SPIRES].

    ADS  Google Scholar 

  15. D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [SPIRES].

    Article  ADS  Google Scholar 

  16. D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the Ω b /Ω DM puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [SPIRES].

    ADS  Google Scholar 

  17. S.B. Gudnason, C. Kouvaris and F. Sannino, Dark matter from new technicolor theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [SPIRES].

    ADS  Google Scholar 

  18. T. Cohen and K.M. Zurek, Leptophilic dark matter from the lepton asymmetry, Phys. Rev. Lett. 104 (2010) 101301 [arXiv:0909.2035] [SPIRES].

    Article  ADS  Google Scholar 

  19. T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric dark matter from a GeV hidden sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [SPIRES].

    ADS  Google Scholar 

  20. P.-H. Gu, A left-right symmetric model for neutrino masses, baryon asymmetry and dark matter, Phys. Rev. D 81 (2010) 095002 [arXiv:1001.1341] [SPIRES].

    ADS  Google Scholar 

  21. J. Shelton and K.M. Zurek, Darkogenesis: a baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010) 123512 [arXiv:1008.1997] [SPIRES].

    ADS  Google Scholar 

  22. H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: a unified origin for baryonic visible matter and antibaryonic dark matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [SPIRES].

    Article  ADS  Google Scholar 

  23. N. Haba and S. Matsumoto, Baryogenesis from dark sector, arXiv:1008.2487 [SPIRES].

  24. M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via leptogenesis and dark sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [SPIRES].

    Article  ADS  Google Scholar 

  25. J. Mc Donald, Baryomorphosis: relating the baryon asymmetry to the ‘WIMP miracle’, arXiv:10093227 [SPIRES].

  26. L.J. Hall, J. March-Russell and S.M. West, A unified theory of matter genesis: asymmetric freeze-in, arXiv:1010.0245 [SPIRES].

  27. B. Dutta and J. Kumar, Asymmetric dark matter from hidden sector baryogenesis, Phys. Lett. B 699 (2011) 364 [arXiv:1012.1341] [SPIRES].

    ADS  Google Scholar 

  28. M.T. Frandsen, S. Sarkar and K. Schmidt-Hoberg, Light asymmetric dark matter from new strong dynamics, arXiv:1103.4350 [SPIRES].

  29. J. March-Russell and M. Mc Cullough, Asymmetric dark matter via spontaneous co-genesis, arXiv:1106.4319 [SPIRES].

  30. M.R. Buckley and L. Randall, Xogenesis, arXiv:1009.0270 [SPIRES].

  31. S. Weinberg, Gauge and global symmetries at high temperature, Phys. Rev. D9 (1974) 3357 [SPIRES].

    ADS  Google Scholar 

  32. D. Land and E.D. Carlson, Two stage phase transition in two Higgs models, Phys. Lett. B 292 (1992) 107 [hep-ph/9208227] [SPIRES].

    ADS  Google Scholar 

  33. A. Hammerschmitt, J. Kripfganz and M.G. Schmidt, Baryon asymmetry from a two stage electroweak phase transition?, Z. Phys. C 64 (1994) 105 [hep-ph/9404272] [SPIRES].

    ADS  Google Scholar 

  34. A.D. Linde, Axions in inflationary cosmology, Phys. Lett. B 259 (1991) 38 [SPIRES].

    ADS  Google Scholar 

  35. A.R. Liddle and D.H. Lyth, The cold dark matter density perturbation, Phys. Rept. 231 (1993) 1 [astro-ph/9303019] [SPIRES].

    Article  ADS  Google Scholar 

  36. A.D. Linde, Hybrid inflation, Phys. Rev. D 49 (1994) 748 [astro-ph/9307002] [SPIRES].

    ADS  Google Scholar 

  37. E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev. D 49 (1994) 6410 [astro-ph/9401011] [SPIRES].

    ADS  Google Scholar 

  38. E.D. Stewart, Mutated hybrid inflation, Phys. Lett. B 345 (1995) 414 [astro-ph/9407040] [SPIRES].

    ADS  Google Scholar 

  39. L. Randall, M. Soljacic and A.H. Guth, Supernatural inflation: inflation from supersymmetry with no (very) small parameters, Nucl. Phys. B 472 (1996) 377 [hep-ph/9512439] [SPIRES].

    Article  ADS  Google Scholar 

  40. A. Manohar, Statistical mechanics of noninteracting particles, Phys. Lett. 186B (1987) 370 [SPIRES].

    ADS  Google Scholar 

  41. J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [SPIRES].

    ADS  Google Scholar 

  42. OPAL collaboration, G. Abbiendi et al., Search for anomalous production of di-lepton events with missing transverse momentum in e + e collisions at \( \sqrt {s} = 183 \) GeV to 209 GeV, Eur. Phys. J. C 32 (2004) 453 [hep-ex/0309014] [SPIRES].

    ADS  Google Scholar 

  43. S.A. Raby and G. West, A simple solution to the solar neutrino and missing mass problems, Nucl. Phys. B 292 (1987) 793 [SPIRES].

    Article  ADS  Google Scholar 

  44. J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting dark matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [SPIRES].

    ADS  Google Scholar 

  45. S.I. Bityukov and N.V. Krasnikov, The search for sleptons and flavor-lepton-number violation at LHC (CMS), Phys. Atom. Nucl. 62 (1999) 1213 [hep-ph/9712358] [SPIRES].

    ADS  Google Scholar 

  46. M.L. Graesser, I.M. Shoemaker and L. Vecchi, Asymmetric WIMP dark matter, arXiv:1103.2771 [SPIRES].

  47. K. Dick, M. Lindner, M. Ratz and D. Wright, Leptogenesis with Dirac neutrinos, Phys. Rev. Lett. 84 (2000) 4039 [hep-ph/9907562] [SPIRES].

    Article  ADS  Google Scholar 

  48. H. Murayama and A. Pierce, Realistic Dirac leptogenesis, Phys. Rev. Lett. 89 (2002) 271601 [hep-ph/0206177] [SPIRES].

    Article  ADS  Google Scholar 

  49. G. Gelmini and E. Roulet, Neutrino masses, Rept. Prog. Phys. 58 (1995) 1207 [hep-ph/9412278] [SPIRES].

    Article  ADS  Google Scholar 

  50. R. Foot, M.J. Thomson and R.R. Volkas, Large neutrino asymmetries from neutrino oscillations, Phys. Rev. D 53 (1996) 5349 [hep-ph/9509327] [SPIRES].

    ADS  Google Scholar 

  51. A.D. Dolgov and F.L. Villante, BBN bounds on active-sterile neutrino mixing, Nucl. Phys. B 679 (2004) 261 [hep-ph/0308083] [SPIRES].

    Article  ADS  Google Scholar 

  52. P. Meade, M. Papucci, A. Strumia and T. Volansky, Dark matter interpretations of the electron/positron excesses after FERMI, Nucl. Phys. B 831 (2010) 178 [arXiv:0905.0480] [SPIRES].

    Article  ADS  Google Scholar 

  53. M. Dine, L. Randall and S.D. Thomas, Baryogenesis from flat directions of the supersymmetric standard model, Nucl. Phys. B 458 (1996) 291 [hep-ph/ 9507453] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  54. E.W. Kolb and M.S. Turner, The early universe, Front. Phys. 69 (1990) 1 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  55. I. Affleck and M. Dine, A new mechanism for baryogenesis, Nucl. Phys. B 249 (1985) 361 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  56. M. Kawasaki and K. Nakayama, Baryon asymmetry in heavy moduli scenario, Phys. Rev. D 76 (2007) 043502 [arXiv:0705.0079] [SPIRES].

    ADS  Google Scholar 

  57. A.Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [SPIRES].

    Article  ADS  Google Scholar 

  58. J.P. Conlon and F. Quevedo, Astrophysical and cosmological implications of large volume string compactifications, JCAP 08 (2007) 019 [arXiv:0705.3460] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  59. B.A. Bassett, S. Tsujikawa and D. Wands, Inflation dynamics and reheating, Rev. Mod. Phys. 78 (2006) 537 [astro-ph/0507632] [SPIRES].

    Article  ADS  Google Scholar 

  60. T. Asaka and T. Yanagida, Solving the gravitino problem by axino, Phys. Lett. B 494 (2000) 297 [hep-ph/0006211] [SPIRES].

    ADS  Google Scholar 

  61. G.W. Anderson and L.J. Hall, The electroweak phase transition and baryogenesis, Phys. Rev. D 45 (1992) 2685 [SPIRES].

    ADS  Google Scholar 

  62. S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [SPIRES].

    ADS  Google Scholar 

  63. A. Megevand and A.D. Sanchez, Velocity of electroweak bubble walls, Nucl. Phys. B 825 (2010) 151 [arXiv:0908.3663] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanou Cui.

Additional information

ArXiv ePrint: 1106.4834

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Randall, L. & Shuve, B. Emergent dark matter, baryon, and lepton numbers. J. High Energ. Phys. 2011, 73 (2011). https://doi.org/10.1007/JHEP08(2011)073

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)073

Keywords

Navigation