Skip to main content
Log in

New Higgs interactions and recent data from the LHC and the Tevatron

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We perform a multi-parameter global analysis of all data available till date from the ATLAS, CMS and Tevatron experiments, on the signals of a Higgs boson, to investigate how much scope exists for departure from the standard model prediction. We adopt a very general and model-independent scenario, where separate deviations from standard model values are possible for couplings of the observed scalar with up-and down-type fermions, W-and Z-boson pairs, as well as gluon and photon pair effective interactions. An arbitrary phase in the coupling with the top-pair, and the provision for an invisible decay width for the scalar are also introduced. After performing a global fit with seven parameters, we find that their values at 95% confidence level can be considerably different from standard model expectations. Moreover, rather striking implications of the phase in top-quark coupling are noticed. We also note that the invisible branching ratio can be sizeable, especially when the couplings of the Higgs to W-and Z-pairs are allowed to be different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Incandela, Status of the CMS SM Higgs Search, talk on behalf of the CMS Collaboration at CERN, 4th July, 2012, https://cms-docdb.cern.ch/cgi-bin/PublicDocDB//ShowDocument?docid=6125.

  2. F. Gianotti, Status of Standard Model Higgs Searches in ATLAS, talk on behalf of the ATLAS Collaboration at CERN, 4th July, 2012, https://cms-docdb.cern.ch/cgi-bin/PublicDocDB//ShowDocument?docid=6126.

  3. S.L. Glashow, Partial Symmetries Of Weak Interactions, Nucl. Phys. 22 (1961) 579.

    Article  Google Scholar 

  4. S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Salam, Weak and Electromagnetic Interactions, Proceedings of 8th Nobel Symposium, Ed. N. Svartholm (1968).

  6. F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    ADS  Google Scholar 

  9. G. Guralnik, C. Hagen and T. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    Article  ADS  Google Scholar 

  10. P.W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys. Rev. 145 (1966) 1156 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Kibble, Symmetry breaking in nonAbelian gauge theories, Phys. Rev. 155 (1967) 1554 [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Farina, C. Grojean and E. Salvioni, (Dys)Zphilia or a custodial breaking Higgs at the LHC, JHEP 07 (2012) 012 [arXiv:1205.0011] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Li, X. Wan, Y.-k. Wang and S.-h. Zhu, Constraints on the Universal Varying Yukawa Couplings: from SM-like to Fermiophobic, arXiv:1203.5083 [INSPIRE].

  17. M. Rauch, Determination of Higgs-boson couplings (SFitter), arXiv:1203.6826 [INSPIRE].

  18. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for Invisible Higgs Decays with Global Fits, arXiv:1205.6790 [INSPIRE].

  19. J. Ellis and T. You, Global Analysis of Experimental Constraints on a Possible Higgs-Like Particle with Mass 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Dührssen et al., Extracting Higgs boson couplings from CERN LHC data, Phys. Rev. D 70 (2004) 113009 [hep-ph/0406323] [INSPIRE].

    ADS  Google Scholar 

  22. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs Sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, arXiv:1205.2699 [INSPIRE].

  24. A. Azatov et al., Determining Higgs couplings with a model-independent analysis of h → γγ, JHEP 06 (2012) 134 [arXiv:1204.4817] [INSPIRE].

    Article  ADS  Google Scholar 

  25. I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, arXiv:1207.1093 [INSPIRE].

  26. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, arXiv:1207.1344 [INSPIRE].

  27. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, arXiv:1207.1347 [INSPIRE].

  28. J. Ellis and T. You, Global Analysis of the Higgs Candidate with Mass 125 GeV, arXiv:1207.1693 [INSPIRE].

  29. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, arXiv:1207.1717 [INSPIRE].

  30. M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, arXiv:1207.1716 [INSPIRE].

  31. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs After the Discovery: A Status Report, arXiv:1207.1718 [INSPIRE].

  32. J. Baglio, A. Djouadi and R. Godbole, The apparent excess in the Higgs to di-photon rate at the LHC: New Physics or QCD uncertainties?, arXiv:1207.1451 [INSPIRE].

  33. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  34. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the decay channel H to ZZ to 4 leptons in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Rev. Lett. 108 (2012)111804 [arXiv:1202.1997] [INSPIRE].

    Article  ADS  Google Scholar 

  35. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 710 (2012) 91 [arXiv:1202.1489] [INSPIRE].

    ADS  Google Scholar 

  36. CMS collaboration, S. Chatrchyan et al., Search for neutral Higgs bosons decaying to tau pairs in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 713 (2012) 68 [arXiv:1202.4083] [INSPIRE].

    ADS  Google Scholar 

  37. ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7\;TeV \) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  38. ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the decay channel H → ZZ → 4l with 4.8 fb −1 of pp collision data at \( \sqrt{s}=7\;TeV \) with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].

    ADS  Google Scholar 

  39. ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt{s}=7\;TeV \) with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  40. Tevatron New Physics Higgs Working Group, CDF, D0 collaboration, Updated Combination of CDF and D0 Searches for Standard Model Higgs Boson Production with up to 10.0 fb −1 of Data, arXiv:1207.0449 [INSPIRE].

  41. K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy constraints on electroweak three gauge boson couplings, Phys. Lett. B 283 (1992) 353 [INSPIRE].

    ADS  Google Scholar 

  42. K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].

    ADS  Google Scholar 

  43. M. Gonzalez-Garcia, Anomalous Higgs couplings, Int. J. Mod. Phys. A 14 (1999) 3121 [hep-ph/9902321] [INSPIRE].

    ADS  Google Scholar 

  44. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].

  45. S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 2. Differential Distributions, arXiv:1201.3084 [INSPIRE].

  46. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/Crosssections.

  47. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  48. A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, arXiv:1207.1348 [INSPIRE].

  49. A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  50. P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Higgs production via vector-boson fusion at NNLO in QCD, Phys. Rev. Lett. 105 (2010) 011801 [arXiv:1003.4451] [INSPIRE].

    Article  ADS  Google Scholar 

  51. P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Vector boson fusion at NNLO in QCD: SM Higgs and beyond, Phys. Rev. D 85 (2012) 035002 [arXiv:1109.3717] [INSPIRE].

    ADS  Google Scholar 

  52. http://vbf-nnlo.phys.ucl.ac.be/vbf.html.

  53. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    ADS  Google Scholar 

  54. F. James, private communication.

  55. J. Baglio and A. Djouadi, Predictions for Higgs production at the Tevatron and the associated uncertainties, JHEP 10 (2010) 064 [arXiv:1003.4266] [INSPIRE].

    Article  ADS  Google Scholar 

  56. http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/.

  57. W.H. Press et al., Numerical Recipes in Fortran, Cambridge University Press, Cambridge U.K. (2005).

    Google Scholar 

  58. E. Gabrielli, B. Mele and M. Raidal, Has a fermiophobic Higgs boson been detected at the LHC ?, arXiv:1202.1796 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankha Banerjee.

Additional information

ArXiv ePrint: 1207.3588

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Mukhopadhyay, S. & Mukhopadhyaya, B. New Higgs interactions and recent data from the LHC and the Tevatron. J. High Energ. Phys. 2012, 62 (2012). https://doi.org/10.1007/JHEP10(2012)062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)062

Keywords

Navigation