Skip to main content
Log in

On-shell recursion in string theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We prove that all open string theory disc amplitudes in a flat background obey Britto-Cachazo-Feng-Witten (BCFW) on-shell recursion relations, up to a possible reality condition on a kinematic invariant. Arguments that the same holds for tree level closed string amplitudes are given as well. Non-adjacent BCFW-shifts are related to adjacent shifts through monodromy relations for which we provide a novel CFT based derivation. All possible recursion relations are related by old-fashioned string duality. The field theory limit of the analysis for amplitudes involving gluons is explicitly shown to be smooth for both the bosonic string as well as the superstring. In addition to a proof a less rigorous but more powerful argument based on the underlying CFT is presented which suggests that the technique may extend to a much more general setting in string theory. This is illustrated by a discussion of the open string in a constant B-field background and the closed string on the level of the sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. G. Veneziano, Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories, Nuovo. Cim. A 57 (1968) 190.

    Article  ADS  Google Scholar 

  3. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. T heor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  4. R. Britto, F. Cachazo and B. Feng, New Recursion Relations for Tree Amplitudes of Gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. R. Britto, F. Cachazo, B. Feng, and E. Witten, Direct proof of tree-level recursion relation in yang-mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [SPIRES].

    Article  ADS  Google Scholar 

  8. C. Cheung, On-Shell Recursion Relations for Generic Theories, JHEP 03 (2010) 098 [arXiv:0808.0504] [SPIRES].

    Article  ADS  Google Scholar 

  9. R. Boels, K.J. Larsen, N.A. Obers and M. Vonk, MHV, CSW and BCFW: field theory structures in string theory amplitudes, JHEP 11 (2008) 015 [arXiv:0808.2598] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Medina, F.T. Brandt and F.R. Machado, The open superstring 5-point amplitude revisited, JHEP 07 (2002) 071 [hep-th/0208121] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. L.A. Barreiro and R. Medina, 5-field terms in the open superstring effective action, JHEP 03 (2005) 055 [hep-th/0503182] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. C.R. Mafra, Simplifying the Tree-level Superstring Massless Five-point Amplitude, JHEP 01 (2010) 007 [arXiv:0909.5206] [SPIRES].

    Article  ADS  Google Scholar 

  13. D. Oprisa and S. Stieberger, Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums, hep-th/0509042 [SPIRES].

  14. S. Stieberger and T.R. Taylor, Supersymmetry Relations and MHV Amplitudes in Superstring Theory, Nucl. Phys. B 793 (2008) 83 [arXiv:0708.0574] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Plahte, Symmetry properties of dual tree-graph n-point amplitudes, Nuovo Cim. A 66 (1970) 713 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal Basis for Gauge Theory Amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, arXiv:0907.2211 [SPIRES].

  18. H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Cheung, D. O’Connell and B. Wecht, BCFW Recursion Relations and String Theory, JHEP 09 (2010) 052 [arXiv:1002.4674] [SPIRES].

    Article  ADS  Google Scholar 

  20. P. Di Vecchia, The birth of string theory, Lect. Notes Phys. 737 (2008) 59 [arXiv:0704.0101] [SPIRES].

    Article  ADS  Google Scholar 

  21. M.B. Green, J.H. Schwarz, and E. Witten, Superstring Theory. Vol. 1: Introduction, Cambridge Univ. Press, Cambridge U.K. (1987).

    Google Scholar 

  22. K. Bardakci and H. Ruegg, Reggeized resonance model for the production amplitude, Phys. Lett. B 28 (1968) 342 [SPIRES].

    ADS  Google Scholar 

  23. Z. Koba and H.B. Nielsen, Reaction amplitude for n mesons: A Generalization of the Veneziano-Bardakci-Ruegg-Virasora model, Nucl. Phys. B 10 (1969) 633 [SPIRES].

    Article  ADS  Google Scholar 

  24. N. Arkani-Hamed and J. Kaplan, On Tree Amplitudes in Gauge Theory and Gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [SPIRES].

    Article  MathSciNet  Google Scholar 

  25. R. Boels, Covariant representation theory of the Poincaré algebra and some of its extensions, JHEP 01 (2010) 010 [arXiv:0908.0738] [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Ademollo et al., Soft Dilations and Scale Renormalization in Dual Theories, Nucl. Phys. B 94 (1975) 221 [SPIRES].

    Article  ADS  Google Scholar 

  27. H. Elvang, private communication.

  28. S. Stieberger and T.R. Taylor, Multi-gluon scattering in open superstring theory, Phys. Rev. D 74 (2006) 126007 [hep-th/0609175] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. S. Stieberger and T.R. Taylor, Complete Six-Gluon Disk Amplitude in Superstring Theory, Nucl. Phys. B 801 (2008) 128 [arXiv:0711.4354] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. N. Berkovits and J. Maldacena, Fermionic T -duality, Dual Superconformal Symmetry and the Amplitude/Wilson Loop Connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. F. Liu, Massive amplitudes of the open superstring, Phys. Rev. D 38 (1988) 1334 [SPIRES].

    ADS  Google Scholar 

  32. Z. Xiao and C.-J. Zhu, Factorization and unitarity in superstring theory, JHEP 08 (2005) 058 [hep-th/0503248] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. E. Hatefi, On effective actions of BPS branes and their higher derivative corrections, JHEP 05 (2010) 080 [arXiv:1003.0314] [SPIRES].

    Article  ADS  Google Scholar 

  34. T. Søndergaard, New Relations for Gauge-Theory Amplitudes with Matter, Nucl. Phys. B 821 (2009) 417 [arXiv:0903.5453] [SPIRES].

    Article  ADS  Google Scholar 

  35. R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and Gauge/String Duality, JHEP 12 (2007) 005 [hep-th/0603115] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. E. Del Giudice, P. Di Vecchia and S. Fubini, General properties of the dual resonance model, Ann. Phys. 70 (1972) 378 [SPIRES].

    Article  ADS  Google Scholar 

  37. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Raju, The Noncommutative S-matrix, JHEP 06 (2009) 005 [arXiv:0903.0380] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473 [SPIRES].

  40. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [SPIRES].

    Article  ADS  Google Scholar 

  41. R. Dolen, D. Horn and C. Schmid, Finite energy sum rules and their application to pi N charge exchange, Phys. Rev. 166 (1968) 1768 [SPIRES].

    Article  ADS  Google Scholar 

  42. D.J. Gross, High-Energy Symmetries of String Theory, Phys. Rev. Lett. 60 (1988) 1229 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. R. Brooks, Relating scattering amplitudes in bosonic and topological string theories, Phys. Lett. B 289 (1992) 317 [hep-th/9203032] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306 (1988) 759 [SPIRES].

    Article  ADS  Google Scholar 

  45. K. Sakai, Recursion relation for string S matrix, Phys. Lett. B 255 (1991) 39 [SPIRES].

    ADS  Google Scholar 

  46. A. Ilderton, Recursive structures in string field theory, Nucl. Phys. B 759 (2006) 283 [hep-th/0606249] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. P. Di Vecchia, R. Nakayama, J.L. Petersen, J. Sidenius and S. Sciuto, BRST Invariant N Reggeon Vertex, Phys. Lett. B 182 (1986) 164 [SPIRES].

    ADS  Google Scholar 

  48. C. Cheung and D. O’Connell, Amplitudes and Spinor-Helicity in Six Dimensions, JHEP 07 (2009) 075 [arXiv:0902.0981] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. R.H. Boels, No triangles on the moduli space of maximally supersymmetric gauge theory, JHEP 05 (2010) 046 [arXiv:1003.2989] [SPIRES].

    Article  ADS  Google Scholar 

  50. A. Tsuchiya and Y. Kanie, Vertex operators in conformal field theory on P(1) and monodromy representations of braid group, Adv. Stud. Pure Math. 16 (1988) 297.

    MathSciNet  Google Scholar 

  51. G.W. Moore and N. Reshetikhin, A Comment on Quantum Group Symmetry in Conformal Field Theory, Nucl. Phys. B 328 (1989) 557 [SPIRES].

    Article  ADS  Google Scholar 

  52. M.B. Halpern and N.A. Obers, New semiclassical nonabelian vertex operators for chiral and nonchiral WZW theory, Int. J. Mod. Phys. A 12 (1997) 4317 [hep-th/9610081] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes, Phys. Rev. D 71 (2005) 105013 [hep-th/0501240] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. P. Benincasa and F. Cachazo, Consistency Conditions on the S-matrix of Massless Particles, arXiv:0705.4305 [SPIRES].

  55. D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: A graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [SPIRES].

    Article  ADS  Google Scholar 

  56. J.H. Schwarz, Superstring Theory, Phys. Rept. 89 (1982) 223 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  57. F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [SPIRES].

    Article  ADS  Google Scholar 

  58. K. Risager, A direct proof of the CSW rules, JHEP 12 (2005) 003 [hep-th/0508206] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutger H. Boels.

Additional information

ArXiv ePrint: 1002.5029

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boels, R.H., Marmiroli, D. & Obers, N.A. On-shell recursion in string theory. J. High Energ. Phys. 2010, 34 (2010). https://doi.org/10.1007/JHEP10(2010)034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)034

Keywords

Navigation