Skip to main content
Log in

No triangles on the moduli space of maximally supersymmetric gauge theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Maximally supersymmetric gauge theory in four dimensions has a remarkably simple S-matrix at the origin of its moduli space at both tree and loop level. This leads to the question what, if any, of this structure survives at the complement of this one point. Here this question is studied in detail at one loop for the branch of the moduli space parameterized by a vacuum expectation value for one complex scalar. Motivated by the parallel D-brane picture of spontaneous symmetry breaking a simple relation is demonstrated between the Lagrangian of broken super Yang-Mills theory and that of its higher dimensional unbroken cousin. Using this relation it is proven both through an onas well as an off-shell method there are no so-called triangle coefficients in the natural basis of one-loop functions at any finite point of the moduli space for the theory under study. The off-shell method yields in addition absence of rational terms in a class of theories on the Coulomb branch which includes the special case of maximal supersymmetry. The results in this article provide direct field theory evidence for a recently proposed exact dual conformal symmetry motivated by the AdS/CFT correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. J.M. Henn, Duality between Wilson loops and gluon amplitudes, Fortsch. Phys. 57 (2009) 729 [arXiv:0903.0522] [SPIRES].

    Article  MathSciNet  Google Scholar 

  7. A. Brandhuber, P. Heslop and G. Travaglini, Proof of the dual conformal anomaly of one-loop amplitudes in N = 4 SYM, JHEP 10 (2009) 063 [arXiv:0906.3552] [SPIRES].

    Article  ADS  Google Scholar 

  8. L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of N = 4 super Yang- Mills, JHEP 01 (2010) 077 [arXiv:0908.0684] [SPIRES].

    Article  Google Scholar 

  9. J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, Higgs-regularized three-loop four-gluon amplitude in N = 4 SYM: exponentiation andRegge limits, JHEP 04 (2010) 038 [arXiv:1001.1358] [SPIRES].

    Article  Google Scholar 

  10. R.M. Schabinger, Scattering on the moduli space of N = 4 super Yang-Mills, arXiv:0801.1542 [SPIRES].

  11. I. Pesando, On the effective potential of the \( Dp\bar Dp \) system in type-II theories, Mod. Phys. Lett. A 14 (1999) 1545 [hep-th/9902181] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, arXiv:0808.1446 [SPIRES].

  13. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. R. Boels, Covariant representation theory of the Poincaré algebra and some of its extensions, JHEP 01 (2010) 010 [arXiv:0908.0738] [SPIRES].

    Article  ADS  Google Scholar 

  15. S. Dittmaier, Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles, Phys. Rev. D 59 (1999) 016007 [hep-ph/9805445] [SPIRES].

    ADS  Google Scholar 

  16. R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. S.D. Badger, E.W.N. Glover, V.V. Khoze and P. Svrček, Recursion relations for gauge theory amplitudes with massive particles, JHEP 07 (2005) 025 [hep-th/0504159] [SPIRES].

    Article  ADS  Google Scholar 

  19. N. Arkani-Hamed and J. Kaplan, On tree amplitudes in gauge theory and gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [SPIRES].

    Article  MathSciNet  Google Scholar 

  20. C. Cheung, On-shell recursion relations for generic theories, JHEP 03 (2010) 098 [arXiv:0808.0504] [SPIRES].

    Article  Google Scholar 

  21. C. Schwinn and S. Weinzierl, On-shell recursion relations for all Born QCD amplitudes, JHEP 04 (2007) 072 [hep-ph/0703021] [SPIRES].

    Article  ADS  Google Scholar 

  22. C. Cheung and D. O’Connell, Amplitudes and Spinor-Helicity in six dimensions, JHEP 07 (2009) 075 [arXiv:0902.0981] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. P. Fayet, Spontaneous generation of massive multiplets and central charges in extended supersymmetric theories, Nucl. Phys. B 149 (1979) 137 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. M.F. Sohnius, Introducing supersymmetry, Phys. Rept. 128 (1985) 39 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. C. Schwinn and S. Weinzierl, SUSY Ward identities for multi-gluon helicity amplitudes with massive quarks, JHEP 03 (2006) 030 [hep-th/0602012] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. M.T. Grisaru and H.N. Pendleton, Some properties of scattering amplitudes in supersymmetric theories, Nucl. Phys. B 124 (1977) 81 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. S.D. Badger, Direct extraction of one loop rational terms, JHEP 01 (2009) 049 [arXiv:0806.4600] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. W.B. Kilgore, One-loop integral coefficients from generalized unitarity, arXiv:0711.5015 [SPIRES].

  32. J.E. Paton and H.-M. Chan, Generalized veneziano model with isospin, Nucl. Phys. B 10 (1969) 516 [SPIRES].

    Article  ADS  Google Scholar 

  33. N.E.J. Bjerrum-Bohr and P. Vanhove, Absence of triangles in maximal supergravity amplitudes, JHEP 10 (2008) 006 [arXiv:0805.3682] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Badger, N.E.J. Bjerrum-Bohr and P. Vanhove, Simplicity in the structure of QED and gravity amplitudes, JHEP 02 (2009) 038 [arXiv:0811.3405] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. D. Oprisa and S. Stieberger, Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums, hep-th/0509042 [SPIRES].

  36. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Reading, U.S.A., Addison-Wesley (1995) pg. 842.

    Google Scholar 

  37. C. Cheung, D. O’Connell and B. Wecht, BCFW recursion relations and string theory, arXiv:1002.4674 [SPIRES].

  38. R.H. Boels, D. Marmiroli and N.A. Obers, On-shell recursion in string theory, arXiv:1002.5029 [SPIRES].

  39. R. Boels, K.J. Larsen, N.A. Obers and M. Vonk, MHV, CSW and BCFW: field theory structures in string theory amplitudes, JHEP 11 (2008) 015 [arXiv:0808.2598] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. E. Plahte, Symmetry properties of dual tree-graph n-point amplitudes, Nuovo Cim. A 66 (1970) 713 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. K.G. Selivanov, An infinite set of tree amplitudes in Higgs- Yang-Mills, Phys. Lett. B 460 (1999) 116 [hep-th/9906001] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [SPIRES].

  44. L.F. Abbott, Introduction to the background field method, Acta Phys. Polon. B 13 (1982) 33 [SPIRES].

    MathSciNet  Google Scholar 

  45. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [SPIRES].

    Article  ADS  Google Scholar 

  46. E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The Lagrangian, Phys. Lett. B 80 (1978) 48 [SPIRES].

    ADS  Google Scholar 

  47. A.H. Chamseddine and V. Mukhanov, Higgs for graviton: simple and elegant solution, arXiv:1002.3877 [SPIRES].

  48. J. Broedel and L.J. Dixon, R 4 counterterm and E77 symmetry in maximal supergravity, arXiv:0911.5704 [SPIRES].

  49. D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [SPIRES].

    Article  ADS  Google Scholar 

  50. T. Dennen, Y.-t. Huang and W. Siegel, Supertwistor space for 6D maximal super Yang-Mills, arXiv:0910.2688 [SPIRES].

  51. R.H. Boels and C. Schwinn, Toward on-shell methods for spontaneously broken gauge theories in four dimensions, in progress.

  52. P. Benincasa and F. Cachazo, Consistency conditions on the S-matrix of massless particles, arXiv:0705.4305 [SPIRES].

  53. B. Feng, J. Wang, Y. Wang and Z. Zhang, BCFW recursion relation with nonzero boundary contribution, JHEP 01 (2010) 019 [arXiv:0911.0301] [SPIRES].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutger H. Boels.

Additional information

ArXiv ePrint: 1003.2989

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boels, R.H. No triangles on the moduli space of maximally supersymmetric gauge theory. J. High Energ. Phys. 2010, 46 (2010). https://doi.org/10.1007/JHEP05(2010)046

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)046

Keywords

Navigation