Skip to main content
Log in

What is the simplest quantum field theory?

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Conventional wisdom says that the simpler the Lagrangian of a theory the simpler its perturbation theory. An ever-increasing understanding of the structure of scattering amplitudes has however been pointing to the opposite conclusion. At tree level, the BCFW recursion relations that completely determine the S-matrix are valid not for scalar theories but for gauge theories and gravity, with gravitational amplitudes exhibiting the best UV behavior at infinite complex momentum. At 1-loop, amplitudes in \( \mathcal{N} = 4 \) SYM only have scalar box integrals, and it was recently conjectured that the same property holds for \( \mathcal{N} = 8 \) SUGRA, which plays an important role in the suspicion that this theory may be finite. In this paper we explore and extend the S-matrix paradigm, and suggest that \( \mathcal{N} = 8 \) SUGRA has the simplest scattering amplitudes in four dimensions. Labeling external states by supercharge eigenstates-Grassmann coherent states-allows the amplitudes to be exposed as completely smooth objects, with the action of SUSY manifest. We show that under the natural supersymmetric extension of the BCFW deformation of momenta, all tree amplitudes in \( \mathcal{N} = 4 \) SYM and \( \mathcal{N} = 8 \) SUGRA vanish at infinite complex momentum, and can therefore be determined by recursion relations. An important difference between \( \mathcal{N} = 8 \) SUGRA and \( \mathcal{N} = 4 \) SYM is that the massless S-matrix is defined everywhere on moduli space, and is acted on by a non-linearly realized E 7(7) symmetry. We elucidate how non-linearly realized symmetries are reflected in the more familiar setting of pion scattering amplitudes, and go on to identify the action of E 7(7) on amplitudes in \( \mathcal{N} = 8 \) SUGRA. Moving beyond tree level, we give a simple general discussion of the structure of 1-loop amplitudes in any QFT, in close parallel to recent work of Forde, showing that the coefficients of scalar “triangle” and “bubble” integrals are determined by the “pole at infinite momentum” of products of tree amplitudes appearing in cuts. In \( \mathcal{N} = 4 \) SYM and \( \mathcal{N} = 8 \) SUGRA, the on-shell superspace makes it easy to compute the multiplet sums that arise in these cuts by relating them to the best behaved tree amplitudes of highest spin, leading to a straightforward proof of the absence of triangles and bubbles at 1-loop. We also argue that rational terms are absent. This establishes that 1-loop amplitudes in \( \mathcal{N} = 8 \) SUGRA only have scalar box integrals. We give an explicit expression for 1-loop amplitudes for both \( \mathcal{N} = 4 \) SYM and \( \mathcal{N} = 8 \) SUGRA in terms of tree amplitudes that can be determined recursively. These amplitudes satisfy further relations in \( \mathcal{N} = 8 \) SUGRA that are absent in \( \mathcal{N} = 4 \) SYM. Since both tree and 1-loop amplitudes for maximally supersymmetric theories can be completely determined by their leading singularities, it is natural to conjecture that this property holds to all orders of perturbation theory. This is the nicest analytic structure amplitudes could possibly have, and if true, would directly imply the perturbative finiteness of \( \mathcal{N} = 8 \) SUGRA. All these remarkable properties of scattering amplitudes call for an explanation in terms of a “weak-weak” dual formulation of QFT, a holographic dual of flat space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, The quantum theory of fields. Vol. 1: Foundations, Cambridge University Press, Cambridge, U.K. (1995) pg. 609 [SPIRES].

    Google Scholar 

  2. S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986) 2459 [SPIRES].

    Article  ADS  Google Scholar 

  3. F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [SPIRES].

    Article  ADS  Google Scholar 

  4. M.L. Mangano and S.J. Parke, Multi-parton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [SPIRES].

    Article  ADS  Google Scholar 

  5. L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [SPIRES].

  6. F. Cachazo and P. Svrček, Lectures on twistor strings and perturbative Yang-Mills theory, PoS(RTN2005)004 [hep-th/0504194] [SPIRES].

  7. Z. Bern, L.J. Dixon and D.A. Kosower, On-shell methods in perturbative QCD, Annals Phys. 322 (2007) 1587 [arXiv:0704.2798] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. D.I. Olive, Exploration of S-matrix theory, Phys. Rev. 135 (1964) B745.

    Article  MathSciNet  ADS  Google Scholar 

  10. G.F. Chew, The analytic S-matrix: A basis for nuclear democracy, W. A. Benjamin, Inc. (1966).

  11. R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix, Cambridge University Press, Cambridge U.K. (1966).

    MATH  Google Scholar 

  12. M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B 266 (1986) 709 [SPIRES].

    Article  ADS  Google Scholar 

  13. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. Z. Bern, L.J. Dixon and D.A. Kosower, On-shell methods in perturbative QCD, Annals Phys. 322 (2007) 1587 [arXiv:0704.2798] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, A recursion relation for gravity amplitudes, Nucl. Phys. B 721 (2005) 98 [hep-th/0502146] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. F. Cachazo and P. Svrček, Tree level recursion relations in general relativity, hep-th/0502160 [SPIRES].

  20. P. Benincasa, C. Boucher-Veronneau and F. Cachazo, Taming tree amplitudes in general relativity, JHEP 11 (2007) 057 [hep-th/0702032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. N. Arkani-Hamed and J. Kaplan, On tree amplitudes in gauge theory and gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [SPIRES].

    Article  MathSciNet  Google Scholar 

  22. G. Chalmers and W. Siegel, Simplifying algebra in Feynman graphs. II: Spinor helicity from the spacecone, Phys. Rev. D 59 (1999) 045013 [hep-ph/9801220] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. C. Cheung, On-shell recursion relations for generic theories, JHEP 03 (2010) 098 [arXiv:0808.0504] [SPIRES].

    Article  ADS  Google Scholar 

  25. The use of this fact for the computation of scattering amplitudes goes back to: F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single Bremsstrahlung processes in gauge theories, Phys. Lett. B 103 (1981) 124 [SPIRES].

  26. P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Multiple Bremsstrahlung in gauge theories at high-energies. 1. General formalism for quantum electrodynamics, Nucl. Phys. B 206 (1982) 53 [SPIRES].

    Article  ADS  Google Scholar 

  27. R. Kleiss and W.J. Stirling, Spinor techniques for calculating \( p\bar{p} \to {{{{W^\pm }}} \left/ {{Z0}} \right.} \) + Jets, Nucl. Phys. B 262 (1985) 235 [SPIRES].

    Article  ADS  Google Scholar 

  28. Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple Bremsstrahlung in massless nonabelian gauge theories, Nucl. Phys. B 291 (1987) 392 [SPIRES].

    Article  ADS  Google Scholar 

  29. J.F. Gunion and Z. Kunszt, Improved analytic techniques for tree graph calculations and the \( Ggq\bar{q} \) lepton anti-lepton subprocess, Phys. Lett. B 161 (1985) 333 [SPIRES].

    ADS  Google Scholar 

  30. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [SPIRES].

    Article  ADS  Google Scholar 

  32. Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B 467 (1996) 479 [hep-ph/9511336] [SPIRES].

    Article  ADS  Google Scholar 

  33. Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one-loop QCD computations, Ann. Rev. Nucl. Part. Sci. 46 (1996) 109 [hep-ph/9602280] [SPIRES].

    Article  ADS  Google Scholar 

  34. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop self-dual and N = 4 super Yang-Mills, Phys. Lett. B 394 (1997) 105 [hep-th/9611127] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. Z. Bern, L.J. Dixon and D.A. Kosower, One-loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [SPIRES].

    Article  ADS  Google Scholar 

  36. Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop ggg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  38. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, arXiv:0808.0491 [SPIRES].

  46. N.E.J. Bjerrum-Bohr, D.C. Dunbar, H. Ita, W.B. Perkins and K. Risager, The no-triangle hypothesis for N = 8 supergravity, JHEP 12 (2006) 072 [hep-th/0610043] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multi-leg one-loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. Z. Bern, N.E.J. Bjerrum-Bohr and D.C. Dunbar, Inherited twistor-space structure of gravity loop amplitudes, JHEP 05 (2005) 056 [hep-th/0501137] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. Z. Bern et al., Three-loop superfiniteness of N = 8 supergravity, Phys. Rev. Lett. 98 (2007) 161303 [hep-th/0702112] [SPIRES].

    Article  ADS  Google Scholar 

  50. Z. Bern, L.J. Dixon and R. Roiban, Is N = 8 supergravity ultraviolet finite?, Phys. Lett. B 644 (2007) 265 [hep-th/0611086] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. M.B. Green, J.G. Russo and P. Vanhove, Non-renormalisation conditions in type-II string theory and maximal supergravity, JHEP 02 (2007) 099 [hep-th/0610299] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. M.B. Green, J.G. Russo and P. Vanhove, Ultraviolet properties of maximal supergravity, Phys. Rev. Lett. 98 (2007) 131602 [hep-th/0611273] [SPIRES].

    Article  ADS  Google Scholar 

  53. N. Berkovits, New higher-derivative R 4 theorems, Phys. Rev. Lett. 98 (2007) 211601 [hep-th/0609006] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [SPIRES] where it was used to prove the dual superconformal invariance of \( \mathcal{N} = 4 \) amplitudes at tree level.

    MathSciNet  ADS  Google Scholar 

  55. D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  56. C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].

    ADS  Google Scholar 

  57. R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [SPIRES].

    Article  ADS  Google Scholar 

  58. S.D. Badger, Direct extraction of one loop rational terms, JHEP 01 (2009) 049 [arXiv:0806.4600] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the reduction of one-loop amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [SPIRES].

    Article  ADS  Google Scholar 

  61. P. Mastrolia, On triple-cut of scattering amplitudes, Phys. Lett. B 644 (2007) 272 [hep-th/0611091] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. N.E.J. Bjerrum-Bohr and P. Vanhove, Absence of triangles in maximal supergravity amplitudes, JHEP 10 (2008) 006 [arXiv:0805.3682] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. Z. Bern, J.J. Carrasco, D. Forde, H. Ita and H. Johansson, Unexpected cancellations in gravity theories, arXiv:0707.1035 [SPIRES].

  64. V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215 [SPIRES].

    ADS  Google Scholar 

  65. S. Mandelstam, Light cone superspace and the ultraviolet finiteness of the N = 4 model, Nucl. Phys. B 213 (1983) 149 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  66. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. M. Bianchi, H. Elvang and D.Z. Freedman, Generating tree amplitudes in N = 4 SYM and N = 8 SG, JHEP 09 (2008) 063 [arXiv:0805.0757] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  68. M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B 266 (1986) 709 [SPIRES].

    Article  ADS  Google Scholar 

  69. R. Roiban, M. Spradlin and A. Volovich, Dissolving N = 4 loop amplitudes into QCD tree amplitudes, Phys. Rev. Lett. 94 (2005) 102002 [hep-th/0412265] [SPIRES].

    Article  ADS  Google Scholar 

  70. E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The lagrangian, Phys. Lett. B 80 (1978) 48 [SPIRES].

    ADS  Google Scholar 

  71. E. Cremmer, B. Julia and J. Scherk, Supergravity theory in 11 dimensions, Phys. Lett. B 76 (1978) 409 [SPIRES].

    ADS  Google Scholar 

  72. E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  73. M.K. Gaillard and B. Zumino, Duality rotations for interacting fields, Nucl. Phys. B 193 (1981) 221 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  74. B. de Wit and H. Nicolai, N= 8 supergravity, Nucl. Phys. B 208 (1982) 323 [SPIRES].

    Article  ADS  Google Scholar 

  75. B. de Wit and D.Z. Freedman, On SO(8) extended supergravity, Nucl. Phys. B 130 (1977) 105 [SPIRES].

    Article  ADS  Google Scholar 

  76. R. Kallosh and M. Soroush, Explicit action of E 7(7) on N = 8 supergravity fields, Nucl. Phys. B 801 (2008) 25 [arXiv:0802.4106] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  77. L. Brink, S.-S. Kim and P. Ramond, E 7(7) on the light cone, JHEP 06 (2008) 034 [AIP Conf. Proc. 1078 (2009) 447] [arXiv:0801.2993] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  78. S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022 [SPIRES].

    Article  ADS  Google Scholar 

  79. S. Weinberg, Pion scattering lengths, Phys. Rev. Lett. 17 (1966) 616 [SPIRES].

    Article  ADS  Google Scholar 

  80. L. Susskind and G. Frye, Algebraic aspects of pionic duality diagrams, Phys. Rev. D1 (1970) 1682 [SPIRES].

    ADS  Google Scholar 

  81. S. Weinberg, Photons and gravitons in S matrix theory: Derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  82. N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  83. Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  84. G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [SPIRES].

    Article  ADS  Google Scholar 

  85. W.L. van Neerven and J.A.M. Vermaseren, Large loop integrals, Phys. Lett. B 137 (1984) 241 [SPIRES].

    ADS  Google Scholar 

  86. Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  87. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  88. Z. Bern and D.A. Kosower, Efficient calculation of one loop QCD amplitudes, Phys. Rev. Lett. 66 (1991) 1669 [SPIRES].

    Article  ADS  Google Scholar 

  89. Nima Arkani-Hamed, Freddy Cachazo, Clifford Cheung and Jared Kaplan, A duality for the S matrix, July (2009) pg. 77 JHEP 03 (2010) 020 [arXiv:0907.5418] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  90. L. Dixon, private communication, unpublished.

  91. M.B. Green, J.H. Schwarz and L. Brink, N= 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B 198 (1982) 474 [SPIRES].

    Article  ADS  Google Scholar 

  92. Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys. B 447 (1995) 465 [hep-ph/9503236] [SPIRES].

    Article  ADS  Google Scholar 

  93. V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts in Modern Physics, Volume 211, Springer-Verlag (2004).

  94. A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three-loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754] [hep-th/0404092] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  95. G.V. Chudnovsky, J. Math. Pure A ppl. 58 (1999) 445.

    MathSciNet  Google Scholar 

  96. L. Lewin, The inner structure of the dilog-arithm in algebraic fields, J. Number Theor. 19 (1984) 345.

    Article  MathSciNet  MATH  Google Scholar 

  97. E.I. Buchbinder and F. Cachazo, Two-loop amplitudes of gluons and octa-cuts in N = 4 super Yang-Mills, JHEP 11 (2005) 036 [hep-th/0506126] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  98. Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  99. F. Cachazo and D. Skinner, On the structure of scattering amplitudes in N = 4 super Yang-Mills and N = 8 supergravity, arXiv:0801.4574 [SPIRES].

  100. F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [SPIRES].

  101. F. Cachazo, M. Spradlin and A. Volovich, Leading singularities of the two-loop six-particle MHV amplitude, Phys. Rev. D 78 (2008) 105022 [arXiv:0805.4832] [SPIRES].

    ADS  Google Scholar 

  102. M. Spradlin, A. Volovich and C. Wen, Three-loop leading singularities and BDS ansatz for five particles, Phys. Rev. D 78 (2008) 085025 [arXiv:0808.1054] [SPIRES].

    ADS  Google Scholar 

  103. T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189 [SPIRES].

    Article  ADS  Google Scholar 

  104. M.B. Green, H. Ooguri and J.H. Schwarz, Decoupling supergravity from the superstring, Phys. Rev. Lett. 99 (2007) 041601 [arXiv:0704.0777] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  105. L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  106. L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  107. N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  108. N. Arkani-Hamed, S. Dubovsky, A. Nicolis, E. Trincherini and G. Villadoro, A measure of de Sitter entropy and eternal inflation, JHEP 05 (2007) 055 [arXiv:0704.1814] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  109. R. Penrose and M.A.H. MacCallum, Twistor theory: An approach to the quantization of fields and space-time, Phys. Rept. 6 (1972) 241 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  110. R. Boels, L. Mason and D. Skinner, Supersymmetric gauge theories in twistor space, JHEP 02 (2007) 014 [hep-th/0604040] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  111. F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [SPIRES].

    Article  ADS  Google Scholar 

  112. R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD, Phys. Rev. D 72 (2005) 065012 [hep-ph/0503132] [SPIRES].

    ADS  Google Scholar 

  113. R. Britto, B. Feng and P. Mastrolia, The cut-constructible part of QCD amplitudes, Phys. Rev. D 73 (2006) 105004 [hep-ph/0602178] [SPIRES].

    ADS  Google Scholar 

  114. Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one-loop QCD computations, Ann. Rev. Nucl. Part. Sci. 46 (1996) 109 [hep-ph/9602280] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared Kaplan.

Additional information

ArXiv ePrint: 0808.1446

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkani-Hamed, N., Cachazo, F. & Kaplan, J. What is the simplest quantum field theory?. J. High Energ. Phys. 2010, 16 (2010). https://doi.org/10.1007/JHEP09(2010)016

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)016

Keywords

Navigation