Skip to main content
Log in

Precision Higgs measurements: constraints from new oblique corrections

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

New particles entering into self-energies of the Higgs boson would necessarily modify loop-induced couplings of the Higgs, if the new particle carries standard model gauge quantum numbers. For a 1 TeV new particle, deviations in these “Higgs oblique corrections” are generically of the order of v 2 /(1 TeV)2 ~ 5%. We study constraints on masses and couplings of new scalars and fermions that can be derived from 5-10% deviations in the Higgs digluon and diphoton partial widths. To reduce theoretical uncertainties, we present next-to-leading order QCD corrections to the Higgs-to-digluon coupling for scalars and fermions in arbitrary representations of SU(3) c color group, by applying the low-energy Higgs theorems at two-loop order. As a by-product we provide a new value for NLO QCD corrections to the top squark contributions to digluon decays that differs from existing literature. We also emphasize that precise measurements of Higgs couplings to W boson and top quark are prerequisite to precise determinations of Higgs oblique corrections from new particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

    ADS  Google Scholar 

  4. ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, Tevatron Electroweak Working Group and SLD Electroweak Working Group and Heavy Flavour Group collaborations, Precision electroweak measurements and constraints on the Standard Model, arXiv:0811.4682 [INSPIRE].

  5. ALEPH, CDF, D0, DELPHI, L3, OPAL and SLD collaborations, J. Alcaraz, Precision electroweak measurements and constraints on the Standard Model, arXiv:0911.2604 [INSPIRE].

  6. ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, Tevatron Electroweak Working Group and SLD Electroweak and Heavy Flavour Groups collaborations, Precision electroweak measurements and constraints on the Standard Model, arXiv:1012.2367 [INSPIRE].

  7. D. Kennedy and P. Langacker, Precision electroweak experiments and heavy physics: a global analysis, Phys. Rev. Lett. 65 (1990) 2967 [Erratum ibid. 66 (1991) 395] [INSPIRE].

    Article  ADS  Google Scholar 

  8. G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].

    Article  ADS  Google Scholar 

  9. P. Langacker and M.-X. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].

    ADS  Google Scholar 

  10. M. Golden and L. Randall, Radiative corrections to electroweak parameters in technicolor theories, Nucl. Phys. B 361 (1991) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  11. B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett. B 265 (1991) 326 [INSPIRE].

    Article  ADS  Google Scholar 

  12. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  13. Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].

    ADS  Google Scholar 

  14. A. Strumia, Bounds on Kaluza-Klein excitations of the SM vector bosons from electroweak tests, Phys. Lett. B 466 (1999) 107 [hep-ph/9906266] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R. Barbieri and A. Strumia, What is the limit on the Higgs mass?, Phys. Lett. B 462 (1999) 144 [hep-ph/9905281] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].

    ADS  Google Scholar 

  18. H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [INSPIRE].

    Article  ADS  Google Scholar 

  19. I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  21. M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].

    Google Scholar 

  22. N. Maru and N. Okada, Gauge-Higgs unification at LHC, Phys. Rev. D 77 (2008) 055010 [arXiv:0711.2589] [INSPIRE].

    ADS  Google Scholar 

  23. F. Bonnet, M. Gavela, T. Ota and W. Winter, Anomalous Higgs couplings at the LHC and their theoretical interpretation, Phys. Rev. D 85 (2012) 035016 [arXiv:1105.5140] [INSPIRE].

    ADS  Google Scholar 

  24. B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs portal with 10 fb−1 at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].

    Article  ADS  Google Scholar 

  25. B.A. Dobrescu, G.D. Kribs and A. Martin, Higgs underproduction at the LHC, Phys. Rev. D 85 (2012) 074031 [arXiv:1112.2208] [INSPIRE].

    ADS  Google Scholar 

  26. A. Arvanitaki and G. Villadoro, A non Standard Model Higgs at the LHC as a sign of naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  28. K. Kumar, R. Vega-Morales and F. Yu, Effects from new colored states and the Higgs portal on gluon fusion and Higgs decays, Phys. Rev. D 86 (2012) 113002 [arXiv:1205.4244] [INSPIRE].

    ADS  Google Scholar 

  29. S. Dawson and E. Furlan, A Higgs conundrum with vector fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].

    ADS  Google Scholar 

  30. R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure Higgs boson couplings?, Phys. Rev. D 86 (2012) 095001 [arXiv:1206.3560] [INSPIRE].

    ADS  Google Scholar 

  31. A. Joglekar, P. Schwaller and C.E. Wagner, Dark matter and enhanced Higgs to di-photon rate from vector-like leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].

    Article  ADS  Google Scholar 

  32. N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2 : 1 for naturalness at the LHC?, JHEP 01 (2013) 149 [arXiv:1207.4482] [INSPIRE].

    Article  ADS  Google Scholar 

  33. F. Bonnet, T. Ota, M. Rauch and W. Winter, Interpretation of precision tests in the Higgs sector in terms of physics beyond the Standard Model, Phys. Rev. D 86 (2012) 093014 [arXiv:1207.4599] [INSPIRE].

    ADS  Google Scholar 

  34. A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, Eur. Phys. J. C 73 (2013) 2498 [arXiv:1208.3436] [INSPIRE].

    Article  ADS  Google Scholar 

  35. L. Wang and X.-F. Han, 130 GeV gamma-ray line and enhancement of h → γγ in the Higgs triplet model plus a scalar dark matter, Phys. Rev. D 87 (2013) 015015 [arXiv:1209.0376] [INSPIRE].

    ADS  Google Scholar 

  36. G. Passarino, NLO inspired effective Lagrangians for Higgs physics, Nucl. Phys. B 868 (2013) 416 [arXiv:1209.5538] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE].

    ADS  Google Scholar 

  38. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].

    ADS  Google Scholar 

  39. J. Reuter and M. Tonini, Can the 125 GeV Higgs be the little Higgs?, JHEP 02 (2013) 077 [arXiv:1212.5930] [INSPIRE].

    Article  ADS  Google Scholar 

  40. X.-F. Han, L. Wang, J.M. Yang and J. Zhu, Little Higgs theory confronted with the LHC Higgs data, Phys. Rev. D 87 (2013) 055004 [arXiv:1301.0090] [INSPIRE].

    ADS  Google Scholar 

  41. C. Cheung, S.D. McDermott and K.M. Zurek, Inspecting the Higgs for new weakly interacting particles, JHEP 04 (2013) 074 [arXiv:1302.0314] [INSPIRE].

    Article  ADS  Google Scholar 

  42. K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs precision (Higgcision) era begins, JHEP 05 (2013) 134 [arXiv:1302.3794] [INSPIRE].

    Article  ADS  Google Scholar 

  43. W.-F. Chang, W.-P. Pan and F. Xu, An effective gauge-Higgs operators analysis of new physics associated with the Higgs, Phys. Rev. D 88 (2013) 033004 [arXiv:1303.7035] [INSPIRE].

    ADS  Google Scholar 

  44. C. Englert and M. McCullough, Modified Higgs sectors and NLO associated production, JHEP 07 (2013) 168 [arXiv:1303.1526] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Joglekar, P. Schwaller and C.E.M. Wagner, A supersymmetric theory of vector-like leptons, JHEP 07 (2013) 046 [arXiv:1303.2969] [INSPIRE].

    Article  ADS  Google Scholar 

  46. R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. N. Maru and N. Okada, Diphoton decay excess and 125 GeV Higgs boson in gauge-Higgs unification, Phys. Rev. D 87 (2013) 095019 [arXiv:1303.5810] [INSPIRE].

    ADS  Google Scholar 

  48. N. Craig, C. Englert and M. McCullough, A new probe of naturalness, arXiv:1305.5251 [INSPIRE].

  49. X.-G. He, Y. Tang and G. Valencia, Interplay between new physics in one-loop Higgs couplings and the top-quark Yukawa coupling, Phys. Rev. D 88 (2013) 033005 [arXiv:1305.5420] [INSPIRE].

    ADS  Google Scholar 

  50. M. Farina, M. Perelstein and N. R.-L. Lorier, Higgs couplings and naturalness, arXiv:1305.6068 [INSPIRE].

  51. P. Artoisenet et al., A framework for Higgs characterisation, arXiv:1306.6464 [INSPIRE].

  52. N. Maru and N. Okada, HZγ in gauge-Higgs unification, Phys. Rev. D 88 (2013) 037701 [arXiv:1307.0291] [INSPIRE].

    ADS  Google Scholar 

  53. J.S. Gainer, W.-Y. Keung, I. Low and P. Schwaller, Looking for a light Higgs boson in the Zγℓℓγ channel,Phys. Rev. D 86 (2012) 033010 [arXiv:1112.1405] [INSPIRE].

    ADS  Google Scholar 

  54. M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  55. S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the Standard Model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    Article  ADS  Google Scholar 

  59. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  60. B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].

    Google Scholar 

  61. F. Wilczek, Decays of heavy vector mesons into Higgs particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].

    Article  ADS  Google Scholar 

  62. H. Georgi, S. Glashow, M. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].

    Article  ADS  Google Scholar 

  63. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  64. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

    Article  ADS  Google Scholar 

  65. K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order \( \alpha_s^4 \), Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE].

    Article  ADS  Google Scholar 

  66. K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to \( O\left( {\alpha_S^3} \right) \) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].

    ADS  Google Scholar 

  67. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the large perturbative corrections to Higgs production at hadron colliders, Phys. Rev. D 79 (2009) 033013 [arXiv:0808.3008] [INSPIRE].

    ADS  Google Scholar 

  68. D. Neill, Two-loop matching onto dimension eight operators in the Higgs-glue sector, arXiv:0908.1573 [INSPIRE].

  69. P. Baikov and K. Chetyrkin, Higgs decay into hadrons to order \( \alpha_s^5 \), Phys. Rev. Lett. 97 (2006) 061803 [hep-ph/0604194] [INSPIRE].

    Article  ADS  Google Scholar 

  70. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].

    Article  ADS  Google Scholar 

  71. G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [INSPIRE].

    Article  ADS  Google Scholar 

  72. R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [INSPIRE].

    Article  ADS  Google Scholar 

  73. S.L. Adler and W.A. Bardeen, Quantum electrodynamics without photon selfenergy parts: an application of the Callan-Symanzik scaling equations, Phys. Rev. D 4 (1971) 3045 [Erratum ibid. D 6 (1972) 734] [INSPIRE].

    ADS  Google Scholar 

  74. E. Braaten and J. Leveille, Higgs boson decay and the running mass, Phys. Rev. D 22 (1980) 715 [INSPIRE].

    ADS  Google Scholar 

  75. D. Jones, The two loop β-function for a G 1 × G 2 gauge theory, Phys. Rev. D 25 (1982) 581 [INSPIRE].

    ADS  Google Scholar 

  76. C. Anastasiou, R. Boughezal and E. Furlan, The NNLO gluon fusion Higgs production cross-section with many heavy quarks, JHEP 06 (2010) 101 [arXiv:1003.4677] [INSPIRE].

    Article  ADS  Google Scholar 

  77. E. Furlan, Gluon-fusion Higgs production at NNLO for a non-standard Higgs sector, JHEP 10 (2011) 115 [arXiv:1106.4024] [INSPIRE].

    Article  ADS  Google Scholar 

  78. S. Dawson, A. Djouadi and M. Spira, QCD corrections to SUSY Higgs production: the role of squark loops, Phys. Rev. Lett. 77 (1996) 16 [hep-ph/9603423] [INSPIRE].

    Article  ADS  Google Scholar 

  79. M. Muhlleitner and M. Spira, Higgs boson production via gluon fusion: squark loops at NLO QCD, Nucl. Phys. B 790 (2008) 1 [hep-ph/0612254] [INSPIRE].

    Article  ADS  Google Scholar 

  80. C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].

    Article  ADS  Google Scholar 

  81. R. Boughezal and F. Petriello, Color-octet scalar effects on Higgs boson production in gluon fusion, Phys. Rev. D 81 (2010) 114033 [arXiv:1003.2046] [INSPIRE].

    ADS  Google Scholar 

  82. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading U.S.A. (1995).

    Google Scholar 

  83. M. Srednicki, Quantum field theory, Cambridge Univ. Pr., Cambridge U.K. (2007).

  84. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

  85. M. Spira, private communications.

  86. A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [INSPIRE].

    Article  ADS  Google Scholar 

  87. R. Dermisek and I. Low, Probing the stop sector and the sanity of the MSSM with the Higgs boson at the LHC, Phys. Rev. D 77 (2008) 035012 [hep-ph/0701235] [INSPIRE].

    ADS  Google Scholar 

  88. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  89. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    Article  ADS  Google Scholar 

  90. M. Carena, S. Gori, I. Low, N.R. Shah and C.E. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].

    Article  ADS  Google Scholar 

  91. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stops, light staus and the 125 GeV Higgs, JHEP 08 (2013) 087 [arXiv:1303.4414] [INSPIRE].

    Article  ADS  Google Scholar 

  92. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  93. T. Hahn, W. Hollik, S. Heinemeyer and G. Weiglein, Precision Higgs masses with FeynHiggs 2.2, eConf C 050318 (2005) 0106 [hep-ph/0507009] [INSPIRE].

  94. M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].

    Article  ADS  Google Scholar 

  95. S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs sector of the complex MSSM at two-loop order: QCD contributions, Phys. Lett. B 652 (2007) 300 [arXiv:0705.0746] [INSPIRE].

    Article  ADS  Google Scholar 

  96. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  97. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    Article  ADS  Google Scholar 

  98. M.E. Peskin, Theoretical summary lecture for Higgs hunting 2012, arXiv:1208.5152 [INSPIRE].

  99. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings at a linear collider, Europhys. Lett. 101 (2013) 51001 [arXiv:1301.1322] [INSPIRE].

    Article  ADS  Google Scholar 

  100. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  101. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  102. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  103. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

    Article  ADS  Google Scholar 

  104. A. Falkowski, Pseudo-Goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].

    ADS  Google Scholar 

  105. I. Low and A. Vichi, On the production of a composite Higgs boson, Phys. Rev. D 84 (2011) 045019 [arXiv:1010.2753] [INSPIRE].

    ADS  Google Scholar 

  106. N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  107. D. Pappadopulo and A. Vichi, T-parity, its problems and their solution, JHEP 03 (2011) 072 [arXiv:1007.4807] [INSPIRE].

    Article  ADS  Google Scholar 

  108. S. Chang, Alittlest Higgsmodel with custodial SU(2) symmetry, JHEP 12 (2003) 057 [hep-ph/0306034] [INSPIRE].

    Article  ADS  Google Scholar 

  109. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Gori.

Additional information

ArXiv ePrint: 1307.0496

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gori, S., Low, I. Precision Higgs measurements: constraints from new oblique corrections. J. High Energ. Phys. 2013, 151 (2013). https://doi.org/10.1007/JHEP09(2013)151

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)151

Keywords

Navigation