Skip to main content
Log in

A supersymmetric theory of vector-like leptons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study a supersymmetric extension of the vector-like lepton scenario, such that the vacuum instability induced by large lepton Yukawa couplings is lifted by the presence of superpartners at or below the TeV scale. In order to preserve the unification of gauge couplings, we introduce a full \( 16+\overline{16} \) of SO(10), and determine the maximal possible values for the Yukawa couplings consistent with perturbativity at the GUT scale. We find that the Higgs to diphoton decay rate can be enhanced by up to 50% while maintaining vacuum stability and keeping the new particle masses above 100 GeV, while larger enhancements are possible if the masses of the new particles are lowered further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Joglekar, P. Schwaller and C.E. Wagner, Dark matter and enhanced Higgs to di-photon rate from vector-like leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].

    Article  ADS  Google Scholar 

  2. N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2 : 1 for naturalness at the LHC?, JHEP 01 (2013) 149 [arXiv:1207.4482] [INSPIRE].

    Article  ADS  Google Scholar 

  3. H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1)PQ -extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].

    ADS  Google Scholar 

  4. J. Kearney, A. Pierce and N. Weiner, Vector-like fermions and Higgs couplings, Phys. Rev. D 86 (2012) 113005 [arXiv:1207.7062] [INSPIRE].

    ADS  Google Scholar 

  5. H. Davoudiasl, H.-S. Lee and W.J. Marciano, Dark side of Higgs diphoton decays and muon g-2, Phys. Rev. D 86 (2012) 095009 [arXiv:1208.2973] [INSPIRE].

    ADS  Google Scholar 

  6. K.J. Bae, T.H. Jung and H.D. Kim, 125 GeV Higgs as a pseudo-Goldstone boson in supersymmetry with vector-like matters, Phys. Rev. D 87 (2013) 015014 [arXiv:1208.3748] [INSPIRE].

    ADS  Google Scholar 

  7. M. Voloshin, CP violation in Higgs diphoton decay in models with vector-like heavy fermions, Phys. Rev. D 86 (2012) 093016 [arXiv:1208.4303] [INSPIRE].

    ADS  Google Scholar 

  8. D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev. D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].

    ADS  Google Scholar 

  9. H.M. Lee, M. Park and W.-I. Park, Axion-mediated dark matter and Higgs diphoton signal, JHEP 12 (2012) 037 [arXiv:1209.1955] [INSPIRE].

    Article  ADS  Google Scholar 

  10. C. Arina, R.N. Mohapatra and N. Sahu, Co-genesis of matter and dark matter with vector-like fourth generation leptons, Phys. Lett. B 720 (2013) 130 [arXiv:1211.0435] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. B. Batell, S. Jung and H.M. Lee, Singlet assisted vacuum stability and the Higgs to diphoton rate, JHEP 01 (2013) 135 [arXiv:1211.2449] [INSPIRE].

    Article  ADS  Google Scholar 

  12. H. Davoudiasl, I. Lewis and E. Ponton, Electroweak phase transition, Higgs diphoton rate and new heavy fermions, arXiv:1211.3449 [INSPIRE].

  13. J. Fan and M. Reece, Probing charged matter through Higgs diphoton decay, gamma ray lines and EDMs, JHEP 06 (2013) 004 [arXiv:1301.2597] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Carmona and F. Goertz, Custodial leptons and Higgs decays, arXiv:1301.5856 [INSPIRE].

  15. C. Cheung, S.D. McDermott and K.M. Zurek, Inspecting the Higgs for new weakly interacting particles, JHEP 04 (2013) 074 [arXiv:1302.0314] [INSPIRE].

    Article  ADS  Google Scholar 

  16. W.-Z. Feng and P. Nath, Higgs diphoton rate and mass enhancement with vector-like leptons and the scale of supersymmetry, Phys. Rev. D 87 (2013) 075018 [arXiv:1303.0289] [INSPIRE].

    ADS  Google Scholar 

  17. C. Englert and M. McCullough, Modified Higgs sectors and NLO associated production, arXiv:1303.1526 [INSPIRE].

  18. S. Dawson and E. Furlan, A Higgs conundrum with vector fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].

    ADS  Google Scholar 

  19. N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].

    ADS  Google Scholar 

  20. S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE].

    ADS  Google Scholar 

  21. G. Moreau, Constraining extra-fermion(s) from the Higgs boson data, Phys. Rev. D 87 (2013) 015027 [arXiv:1210.3977] [INSPIRE].

    ADS  Google Scholar 

  22. E. Bertuzzo, P.A. Machado and R. Zukanovich Funchal, Can new colored particles illuminate the Higgs?, JHEP 02 (2013) 086 [arXiv:1209.6359] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, New J. Phys. 15 (2013) 043003 [arXiv:1208.1765] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Kitahara, Vacuum stability constraints on the enhancement of the hγγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].

    Article  ADS  Google Scholar 

  25. E.J. Chun, H.M. Lee and P. Sharma, Vacuum stability, perturbativity, EWPD and Higgs-to-diphoton rate in type II seesaw models, JHEP 11 (2012) 106 [arXiv:1209.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Carena, S. Gori, I. Low, N. Shah and C. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R. Huo, G. Lee, A.M. Thalapillil and C.E. Wagner, SU(2) ⊗ SU(2) gauge extensions of the MSSM revisited, arXiv:1212.0560 [INSPIRE].

  28. T. Kitahara and T. Yoshinaga, Stau with large mass difference and enhancement of the Higgs to diphoton decay rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461] [INSPIRE].

    Article  ADS  Google Scholar 

  29. K. Babu, I. Gogoladze, M.U. Rehman and Q. Shafi, Higgs boson mass, sparticle spectrum and little hierarchy problem in extended MSSM, Phys. Rev. D 78 (2008) 055017 [arXiv:0807.3055] [INSPIRE].

    ADS  Google Scholar 

  30. S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE].

    ADS  Google Scholar 

  31. P.W. Graham, A. Ismail, S. Rajendran and P. Saraswat, A little solution to the little hierarchy problem: a vector-like generation, Phys. Rev. D 81 (2010) 055016 [arXiv:0910.3020] [INSPIRE].

    ADS  Google Scholar 

  32. M. Endo, K. Hamaguchi, K. Ishikawa, S. Iwamoto and N. Yokozaki, Gauge mediation models with vector-like matters at the LHC, JHEP 01 (2013) 181 [arXiv:1212.3935] [INSPIRE].

    Article  ADS  Google Scholar 

  33. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].

  34. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    Article  ADS  Google Scholar 

  36. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  37. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].

    ADS  Google Scholar 

  38. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector,ATLAS-CONF-2013-035,CERN,GenevaSwitzerland (2013).

  39. CMS collaboration, Search for direct EWK production of SUSY particles in multilepton modes with 8 TeV data, CMS-PAS-SUS-12-022, CERN, Geneva Switzerland (2012).

  40. G. Auberson and G. Moultaka, A convergent scheme for one loop evolutions of the Yukawa couplings in the MSSM, Eur. Phys. J. C 12 (2000) 331 [hep-ph/9907204] [INSPIRE].

    Article  ADS  Google Scholar 

  41. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  42. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  43. CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001, CERN, Geneva Switzerland (2013).

  44. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012, CERN, Geneva Switzerland (2013).

  45. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the Standard Model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  47. M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].

  48. A. Falkowski, Pseudo-Goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].

    ADS  Google Scholar 

  49. M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  50. M.A. Ajaib, I. Gogoladze and Q. Shafi, Higgs boson production and decay: effects from light third generation and vector-like matter, Phys. Rev. D 86 (2012) 095028 [arXiv:1207.7068] [INSPIRE].

    ADS  Google Scholar 

  51. R. Rattazzi and U. Sarid, Large tan β in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].

    Article  ADS  Google Scholar 

  52. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  53. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

  55. C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Schwaller.

Additional information

ArXiv ePrint: 1303.2969

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joglekar, A., Schwaller, P. & Wagner, C.E. A supersymmetric theory of vector-like leptons. J. High Energ. Phys. 2013, 46 (2013). https://doi.org/10.1007/JHEP07(2013)046

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)046

Keywords

Navigation