Skip to main content
Log in

Inspecting the Higgs for new weakly interacting particles

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We explore new physics scenarios which are optimally probed through precision Higgs measurements rather than direct collider searches. Such theories consist of additional electroweak charged or singlet states which couple directly to or mix with the Higgs boson; particles of this kind may be weakly constrained by direct limits due to their meager production rates and soft decay products. We present a simplified framework which characterizes the effects of these states on Higgs physics by way of tree level mixing (with neutral scalars) and loop level modifications (from electrically charged states), all expressed in terms of three mixing angles and three loop parameters, respectively. The theory parameters are constrained and in some cases even fixed by ratios of Higgs production and decay rates. Our setup is simpler than a general effective operator analysis, in that we discard parameters irrelevant to Higgs observables while retaining complex correlations among measurements that arise due to the underlying mixing and radiative effects. We show that certain correlated observations are forbidden, e.g. a depleted ratio of Higgs production from gluon fusion versus vector boson fusion together with a depleted ratio of Higgs decays to \( b\overline{b} \) versus WW. Moreover, we study the strong correlation between the Higgs decay rate to γγ and WW and how it can be violated in the presence of additional electrically charged particles. Our formalism maps straightforwardly onto a variety of new physics models, such as the NMSSM. We show, for example, that with a Higgsino of mass \( {m_{{\chi_1^{\pm }}}}\gtrsim 100 \) GeV and a singlet-Higgs coupling of λ = 0.7, the photon signal strength can deviate from the vector signal strength by up to ∼ 40 − 60% while depleting the vector signal strength by only 5 − 15% relative to the Standard Model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS Higgs public results webpage, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults.

  3. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  4. CMS Higgs physics results webpage, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG.

  5. ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170, CERN, Geneva Switzerland (2012).

  6. CMS collaboration, Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045, CERN, Geneva Switzerland (2012).

  7. ATLAS collaboration, Update of the HWW (∗)eνμν analysis with 13 fb−1 of \( \sqrt{s}=8 \) TeV data collected with the ATLAS detector, ATLAS-CONF-2012-158, CERN, Geneva Switzerland (2012).

  8. CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a Standard Model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-12-042, CERN, Geneva Switzerland (2012).

  9. CMS collaboration, Search for the Standard Model Higgs boson in the HWWℓνjj decay channel in pp collisions at the LHC, CMS-PAS-HIG-12-046, CERN, Geneva Switzerland (2012).

  10. ATLAS collaboration, Study of the channel HZ Z + \( q\overline{q} \) in the mass range 120-180 GeV with the ATLAS detector at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-163, CERN, Geneva Switzerland (2012).

  11. ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the HZZ → 4ℓ channel with the ATLAS detector, ATLAS-CONF-2012-169, CERN, Geneva Switzerland (2012).

  12. CMS collaboration, Updated results on the new boson discovered in the search for the Standard Model Higgs boson in the ZZ → 4 leptons channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-12-041, CERN, Geneva Switzerland (2012).

  13. ATLAS collaboration, Search for the Standard Model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector, ATLAS-CONF-2012-161, CERN, Geneva Switzerland (2012).

  14. CMS collaboration, Search for the Standard Model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for HCP 2012, CMS-PAS-HIG-12-044, CERN, Geneva Switzerland (2012).

  15. ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168, CERN, Geneva Switzerland (2012).

  16. CMS collaboration, Evidence for a new state decaying into two photons in the search for the Standard Model Higgs boson in pp collisions, CMS-PAS-HIG-12-015, CERN, Geneva Switzerland (2012).

  17. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  18. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  19. K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: Higgs couplings, JHEP 01 (2013) 057 [arXiv:1206.5303] [INSPIRE].

    Article  ADS  Google Scholar 

  20. V. Barger, M. Ishida and W.-Y. Keung, Flavor-tuned 125 GeV SUSY Higgs boson at the LHC: MSSM and NATURAL SUSY TESTS, Phys. Rev. D 87 (2013) 015003 [arXiv:1207.0779] [INSPIRE].

    ADS  Google Scholar 

  21. M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].

    Article  ADS  Google Scholar 

  22. N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2 : 1 for naturalness at the LHC?, JHEP 01 (2013) 149 [arXiv:1207.4482] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R.T. D’Agnolo, E. Kuflik and M. Zanetti, Fitting the Higgs to natural SUSY, JHEP 03 (2013) 043 [arXiv:1212.1165] [INSPIRE].

    Article  Google Scholar 

  25. B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs portal with 10 fb−1 at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].

    Article  ADS  Google Scholar 

  26. K. Blum and R.T. D’Agnolo, 2 Higgs or not 2 Higgs, Phys. Lett. B 714 (2012) 66 [arXiv:1202.2364] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Azatov et al., Determining Higgs couplings with a model-independent analysis of hγγ, JHEP 06 (2012) 134 [arXiv:1204.4817] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Dawson and E. Furlan, A Higgs conundrum with vector fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].

    ADS  Google Scholar 

  31. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Akeroyd and S. Moretti, Enhancement of Hγγ from doubly charged scalars in the Higgs triplet model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].

    ADS  Google Scholar 

  33. A. Azatov, S. Chang, N. Craig and J. Galloway, Higgs fits preference for suppressed down-type couplings: implications for supersymmetry, Phys. Rev. D 86 (2012) 075033 [arXiv:1206.1058] [INSPIRE].

    ADS  Google Scholar 

  34. M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  35. N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  36. W.-F. Chang, J.N. Ng and J.M. Wu, Constraints on new scalars from the LHC 125 GeV Higgs signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].

    ADS  Google Scholar 

  37. B. Bellazzini, C. Petersson and R. Torre, Photophilic Higgs from sgoldstino mixing, Phys. Rev. D 86 (2012) 033016 [arXiv:1207.0803] [INSPIRE].

    ADS  Google Scholar 

  38. I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].

    ADS  Google Scholar 

  39. R. Benbrik et al., Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].

    Article  ADS  Google Scholar 

  40. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].

    ADS  Google Scholar 

  41. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M.R. Buckley and D. Hooper, Are there hints of light stops in recent Higgs search results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].

    ADS  Google Scholar 

  43. J. Ellis and T. You, Global analysis of the Higgs candidate with mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    Article  ADS  Google Scholar 

  45. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  46. D. Bertolini and M. McCullough, The social Higgs, JHEP 12 (2012) 118 [arXiv:1207.4209] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Joglekar, P. Schwaller and C.E. Wagner, Dark matter and enhanced Higgs to di-photon rate from vector-like leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].

    Article  ADS  Google Scholar 

  48. N. Haba, K. Kaneta, Y. Mimura and R. Takahashi, Enhancement of Higgs to diphoton decay width in non-perturbative Higgs model, Phys. Lett. B 718 (2013) 1441 [arXiv:1207.5102] [INSPIRE].

    Article  ADS  Google Scholar 

  49. L.G. Almeida, E. Bertuzzo, P.A. Machado and R.Z. Funchal, Does Hγγ taste like vanilla new physics?, JHEP 11 (2012) 085 [arXiv:1207.5254] [INSPIRE].

    Article  ADS  Google Scholar 

  50. D.S. Alves, P.J. Fox and N.J. Weiner, Higgs signals in a type I 2HDM or with a sister Higgs, arXiv:1207.5499 [INSPIRE].

  51. T. Plehn and M. Rauch, Higgs couplings after the discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].

    Article  Google Scholar 

  52. J. Kearney, A. Pierce and N. Weiner, Vectorlike fermions and Higgs couplings, Phys. Rev. D 86 (2012) 113005 [arXiv:1207.7062] [INSPIRE].

    ADS  Google Scholar 

  53. T. Kitahara, Vacuum stability constraints on the enhancement of the hγγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].

    Article  ADS  Google Scholar 

  54. B.A. Dobrescu and J.D. Lykken, Coupling spans of the Higgs-like boson, JHEP 02 (2013) 073 [arXiv:1210.3342] [INSPIRE].

    Article  ADS  Google Scholar 

  55. S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE].

    ADS  Google Scholar 

  56. K. Choi, S.H. Im, K.S. Jeong and M. Yamaguchi, Higgs mixing and diphoton rate enhancement in NMSSM models, JHEP 02 (2013) 090 [arXiv:1211.0875] [INSPIRE].

    Article  ADS  Google Scholar 

  57. H. Davoudiasl, I. Lewis and E. Ponton, Electroweak phase transition, Higgs diphoton rate and new heavy fermions, arXiv:1211.3449 [INSPIRE].

  58. B. Batell, S. Jung and H.M. Lee, Singlet assisted vacuum stability and the Higgs to diphoton rate, JHEP 01 (2013) 135 [arXiv:1211.2449] [INSPIRE].

    Article  ADS  Google Scholar 

  59. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].

    ADS  Google Scholar 

  60. A. Azatov and J. Galloway, Electroweak symmetry breaking and the Higgs boson: confronting theories at colliders, Int. J. Mod. Phys. A 28 (2013) 1330004 [arXiv:1212.1380] [INSPIRE].

    Article  ADS  Google Scholar 

  61. T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt, The scale-invariant NMSSM and the 126 GeV Higgs boson, JHEP 02 (2013) 032 [arXiv:1212.5243] [INSPIRE].

    Article  ADS  Google Scholar 

  62. K. Schmidt-Hoberg and F. Staub, Enhanced hγγ rate in MSSM singlet extensions, JHEP 10 (2012) 195 [arXiv:1208.1683] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, arXiv:1208.1765 [INSPIRE].

  64. M. Carena, S. Gori, I. Low, N.R. Shah and C.E. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].

    Article  ADS  Google Scholar 

  65. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  66. M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].

  67. C. Cheung and Y. Nomura, Higgs descendants, Phys. Rev. D 86 (2012) 015004 [arXiv:1112.3043] [INSPIRE].

    ADS  Google Scholar 

  68. S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].

  69. ATLAS collaboration, Physics at a high-luminosity LHC with ATLAS (update), ATL-PHYS-PUB-2012-004, CERN, Geneva Switzerland (2012).

  70. C. Cheung, M. Papucci and K.M. Zurek, Higgs and dark matter hints of an oasis in the desert, JHEP 07 (2012) 105 [arXiv:1203.5106] [INSPIRE].

    Article  ADS  Google Scholar 

  71. K. Agashe, Y. Cui and R. Franceschini, Natural islands for a 125 GeV Higgs in the scale-invariant NMSSM, JHEP 02 (2013) 031 [arXiv:1209.2115] [INSPIRE].

    Article  ADS  Google Scholar 

  72. LEP SUSY working group webpage, http://lepsusy.web.cern.ch/lepsusy/.

  73. C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel D. McDermott.

Additional information

ArXiv ePrint: 1302.0314

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, C., McDermott, S.D. & Zurek, K.M. Inspecting the Higgs for new weakly interacting particles. J. High Energ. Phys. 2013, 74 (2013). https://doi.org/10.1007/JHEP04(2013)074

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)074

Keywords

Navigation