Skip to main content
Log in

Theoretical constraints on the Higgs effective couplings

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive constraints on the sign of couplings in an effective Higgs Lagrangian using prime principles such as the naturalness principle, global symmetries, and unitarity. Specifically, we study four dimension-six operators, \( {\mathcal{O}_H} \), \( {\mathcal{O}_y} \), \( {\mathcal{O}_g} \), and \( {\mathcal{O}_\gamma } \), which contribute to the production and decay of the Higgs boson at the Large Hadron Collider (LHC), among other things. Assuming the Higgs is a fundamental scalar, we find: 1) the coefficient of \( {\mathcal{O}_H} \) is positive except when there are triplet scalars, resulting in a reduction in the Higgs on-shell coupling from their standard model (SM) expectations if no other operators contribute, 2) the linear combination of \( {\mathcal{O}_H} \) and \( {\mathcal{O}_y} \) controlling the overall Higgs coupling to fermion is always reduced, 3) the sign of \( {\mathcal{O}_g} \) induced by a new colored fermion is such that it interferes destructively with the SM top contribution in the gluon fusion production of the Higgs, if the new fermion cancels the top quadratic divergence in the Higgs mass, and 4) the correlation between naturalness and the sign of \( {\mathcal{O}_\gamma } \) is similar to that of \( {\mathcal{O}_g} \), when there is a new set of heavy electroweak gauge bosons. Next considering a composite scalar for the Higgs, we find the reduction in the on-shell Higgs couplings persists. If further assuming a collective breaking mechanism as in little Higgs theories, the coefficient of \( {\mathcal{O}_H} \) remains positive even in the presence of triplet scalars. In the end, we conclude that the gluon fusion production of the Higgs boson is reduced from the SM rate in all composite Higgs models. Our study suggests a wealth of information could be revealed by precise measurements of the Higgs couplings, providing strong motivations for both improving on measurements at the LHC and building a precision machine such as the linear collider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, ALEPH collaboration, DELPHI collaboration, L3 collaboration, OPAL collaboration, SLD collaboration, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].

  2. C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: Unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [SPIRES].

    ADS  Google Scholar 

  3. D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].

    ADS  Google Scholar 

  4. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].

    ADS  Google Scholar 

  5. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. C. Csáki, C. Grojean and H. Murayama, Standard Model Higgs from Higher Dimensional Gauge Fields, Phys. Rev. D 67 (2003) 085012 [hep-ph/0210133] [SPIRES].

    ADS  Google Scholar 

  7. N. Arkani-Hamed et al., The Minimal Moose for a Little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].

    Article  ADS  Google Scholar 

  10. K. Agashe, R. Contino and A. Pomarol, The Minimal Composite Higgs Model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].

    Article  ADS  Google Scholar 

  11. T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].

    ADS  Google Scholar 

  12. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].

    Article  ADS  Google Scholar 

  13. S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [SPIRES].

    ADS  Google Scholar 

  14. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].

    Article  ADS  Google Scholar 

  15. W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [SPIRES].

    Article  ADS  Google Scholar 

  16. A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [SPIRES].

    Article  ADS  Google Scholar 

  17. S. Chang and J.G. Wacker, Little Higgs and custodial SU(2), Phys. Rev. D 69 (2004) 035002 [hep-ph/0303001] [SPIRES].

    ADS  Google Scholar 

  18. S. Chang, A ’littlest Higgs’ model with custodial SU(2) symmetry, JHEP 12 (2003) 057 [hep-ph/0306034] [SPIRES].

    Article  ADS  Google Scholar 

  19. H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [SPIRES].

    Article  ADS  Google Scholar 

  20. H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. I. Low, T parity and the littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [SPIRES].

    Article  ADS  Google Scholar 

  22. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [SPIRES].

    Article  ADS  Google Scholar 

  23. G. Marandella, C. Schappacher and A. Strumia, Little-Higgs corrections to precision data after LEP2, Phys. Rev. D 72 (2005) 035014 [hep-ph/0502096] [SPIRES].

    ADS  Google Scholar 

  24. M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [SPIRES].

    Article  ADS  Google Scholar 

  25. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [SPIRES].

    Article  ADS  Google Scholar 

  26. C.G. Callan, Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [SPIRES].

    Article  ADS  Google Scholar 

  27. S. Weinberg, The quantum theory of fields. Vol.2: Modern applications, Cambridge Univ. Press, Cambridge U.K. (1996) [SPIRES].

    Google Scholar 

  28. D.E. Kaplan and M. Schmaltz, The little Higgs from a simple group, JHEP 10 (2003) 039 [hep-ph/0302049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Schmaltz and J. Thaler, Collective Quartics and Dangerous Singlets in Little Higgs, JHEP 03 (2009) 137 [arXiv:0812.2477] [SPIRES].

    Article  ADS  Google Scholar 

  30. G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [SPIRES].

    ADS  Google Scholar 

  31. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Addison-Wesley, Reading MA U.S.A. (1990) [SPIRES].

    Google Scholar 

  32. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [SPIRES].

    ADS  Google Scholar 

  33. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [SPIRES].

    Google Scholar 

  34. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].

    Article  ADS  Google Scholar 

  35. S. Weinberg, Effective Gauge Theories, Phys. Lett. B 91 (1980) 51 [SPIRES].

    ADS  Google Scholar 

  36. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [SPIRES].

    ADS  Google Scholar 

  37. A. Pierce, J. Thaler and L.-T. Wang, Disentangling Dimension Six Operators through Di-Higgs Boson Production, JHEP 05 (2007) 070 [hep-ph/0609049] [SPIRES].

    Article  ADS  Google Scholar 

  38. E.L. Berger, Q.-H. Cao and I. Low, Model Independent Constraints Among the Wtb, Zbb and Ztt Couplings, Phys. Rev. D 80 (2009) 074020 [arXiv:0907.2191] [SPIRES].

    ADS  Google Scholar 

  39. H.-C. Cheng, I. Low and L.-T. Wang, Top partners in little Higgs theories with T-parity, Phys. Rev. D 74 (2006) 055001 [hep-ph/0510225] [SPIRES].

    ADS  Google Scholar 

  40. M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [SPIRES].

    ADS  Google Scholar 

  41. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].

    ADS  Google Scholar 

  42. A. Azatov, M. Toharia and L. Zhu, Higgs Mediated FCNC’s in Warped Extra Dimensions, Phys. Rev. D 80 (2009) 035016 [arXiv:0906.1990] [SPIRES].

    ADS  Google Scholar 

  43. N. Arkani-Hamed et al., The Minimal Moose for a Little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. I. Low, W. Skiba and D. Tucker-Smith, Little Higgses from an antisymmetric condensate, Phys. Rev. D 66 (2002) 072001 [hep-ph/0207243] [SPIRES].

    ADS  Google Scholar 

  45. W. Skiba and J. Terning, A simple model of two little Higgses, Phys. Rev. D 68 (2003) 075001 [hep-ph/0305302] [SPIRES].

    ADS  Google Scholar 

  46. R. Barbieri, L.J. Hall and Y. Nomura, A constrained standard model from a compact extra dimension, Phys. Rev. D 63 (2001) 105007 [hep-ph/0011311] [SPIRES].

    ADS  Google Scholar 

  47. I. Gogoladze and C. Macesanu, Precision electroweak constraints on Universal Extra Dimensions revisited, Phys. Rev. D 74 (2006) 093012 [hep-ph/0605207] [SPIRES].

    ADS  Google Scholar 

  48. F.J. Petriello, Kaluza-Klein effects on Higgs physics in universal extra dimensions, JHEP 05 (2002) 003 [hep-ph/0204067] [SPIRES].

    Article  ADS  Google Scholar 

  49. A. Falkowski, Pseudo-Goldstone Higgs Production via Gluon Fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [SPIRES].

    ADS  Google Scholar 

  50. K. Agashe, A. Falkowski, I. Low and G. Servant, KK Parity in Warped Extra Dimension, JHEP 04 (2008) 027 [arXiv:0712.2455] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [SPIRES].

    Google Scholar 

  52. A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [SPIRES].

    ADS  Google Scholar 

  53. M.S. Carena, S. Heinemeyer, C.E.M. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J. C 26 (2003) 601 [hep-ph/0202167] [SPIRES].

    ADS  Google Scholar 

  54. R. Dermisek and I. Low, Probing the stop sector and the sanity of the MSSM with the Higgs boson at the LHC, Phys. Rev. D 77 (2008) 035012 [hep-ph/0701235] [SPIRES].

    ADS  Google Scholar 

  55. G. Cacciapaglia, M. Cirelli and G. Cristadoro, Gluon fusion production of the Higgs boson in a calculable model with one extra dimension, Phys. Lett. B 531 (2002) 105 [hep-ph/0111287] [SPIRES].

    ADS  Google Scholar 

  56. C.A. Scrucca, M. Serone and L. Silvestrini, Electroweak symmetry breaking and fermion masses from extra dimensions, Nucl. Phys. B 669 (2003) 128 [hep-ph/0304220] [SPIRES].

    Article  ADS  Google Scholar 

  57. M. Dührssen et al., Determination of Higgs-boson couplings at the LHC, hep-ph/0407190 [SPIRES].

  58. R. Contino, C. Grojean, M. Moretti, F. Piccinini, and R. Rattazzi, Strong Double Higgs Production at the LHC, arXiv:1002.1011.

  59. C. Anastasiou, K. Melnikov and F. Petriello, The gluon-fusion uncertainty in Higgs coupling extractions, Phys. Rev. D 72 (2005) 097302 [hep-ph/0509014] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Low.

Additional information

ArXiv ePrint: 0907.5413

Rights and permissions

Reprints and permissions

About this article

Cite this article

Low, I., Rattazzi, R. & Vichi, A. Theoretical constraints on the Higgs effective couplings. J. High Energ. Phys. 2010, 126 (2010). https://doi.org/10.1007/JHEP04(2010)126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)126

Keywords

Navigation