Skip to main content
Log in

Brane geometry and dimer models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The field content and interactions of almost all known gauge theories in AdS5/CFT4 can be expressed in terms of dimer models or bipartite graphs drawn on a torus. Associated with the fundamental cell is a complex structure parameter τ R . Based on the brane realization of these theories, we can specify a special Lagrangian (SLag) torus fibration that is the natural candidate to be identified as the torus on which the dimer lives. Using the metrics known in the literature, we compute the complex structure τ G of this torus. For the theories on ℂ3 and the conifold and for orbifolds thereof τ R = τ G . However, for more complicated examples, we show that the two complex structures cannot be equal and yet, remarkably, differ only by a few percent. We leave the explanation for this extraordinary proximity as an open challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Douglas, B.R. Greene and D.R. Morrison, Orbifold resolution by D-branes, Nucl. Phys. B 506 (1997) 84 [hep-th/9704151] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. C. Beasley, B.R. Greene, C.I. Lazaroiu and M.R. Plesser, D3-branes on partial resolutions of Abelian quotient singularities of Calabi-Yau threefolds, Nucl. Phys. B 566 (2000) 599 [hep-th/9907186] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. B. Feng, A. Hanany and Y.H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, [hep-th/0503149] [INSPIRE].

  5. S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. B. Feng, Y.H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Hanany, Y.H. He, V. Jejjala, J. Pasukonis, S. Ramgoolam, and D. Rodriguez-Gomez, Invariants of Toric Seiberg Duality, Int. J. Mod. Phys. A 27 (2012) 1250002 [arXiv:1107.4101] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Strominger, S.T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B 479 (1996)243 [hep-th/9606040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

    Article  ADS  Google Scholar 

  10. Y. Imamura, H. Isono, K. Kimura and M. Yamazaki, Exactly marginal deformations of quiver gauge theories as seen from brane tilings, Prog. Theor. Phys. 117 (2007) 923 [hep-th/0702049] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. K.D. Kennaway, Brane Tilings, Int. J. Mod. Phys. A 22 (2007) 2977 [arXiv:0706.1660] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Yamazaki, Brane Tilings and Their Applications, Fortsch. Phys. 56 (2008) 555 [arXiv:0803.4474] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. K.A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. V. Jejjala, S. Ramgoolam and D. Rodriguez-Gomez, Toric CFTs, Permutation Triples and Belyi Pairs, JHEP 03 (2011) 065 [arXiv:1012.2351] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Hanany, Y.H. He, V. Jejjala, J. Pasukonis, S. Ramgoolam, and D. Rodriguez-Gomez, The Beta Ansatz: A Tale of Two Complex Structures, JHEP 06 (2011) 056 [arXiv:1104.5490] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. D.R. Morrison, On the structure of supersymmetric T 3 fibrations, [arXiv:1002.4921] [INSPIRE].

  18. R. Harvey and H.B. Lawson, Calibrated geometries, Acta Math. 148 (1982) 47 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Martelli and J. Sparks, Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Commun. Math. Phys. 262 (2006) 51 [hep-th/0411238] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. P. Candelas and X.C. de la Ossa, Comments on Conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Cvetič, H. Lü, D.N. Page and C.N. Pope, New Einstein-Sasaki spaces in five and higher dimensions, Phys. Rev. Lett. 95 (2005) 071101 [hep-th/0504225] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. D. Martelli, J. Sparks and S.T. Yau, The Geometric dual of a-maximisation for Toric Sasaki-Einstein manifolds, Commun. Math. Phys. 268 (2006) 39 [hep-th/0503183] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. T. Oota and Y. Yasui, Toric Sasaki-Einstein manifolds and Heun equations, Nucl. Phys. B 742 (2006)275 [hep-th/0512124] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. V. Guillemin, Kaehler structures on toric varieties, J. Diff. Geom. 40 (1994) 285.

    MathSciNet  MATH  Google Scholar 

  25. S. Benvenuti and M. Kruczenski, From Sasaki-Einstein spaces to quivers via BPS geodesics: L p,q|r, JHEP 04 (2006) 033 [hep-th/0505206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Butti, D. Forcella and A. Zaffaroni, The Dual superconformal theory for L p,q,r manifolds, JHEP 09 (2005) 018 [hep-th/0505220] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Jejjala.

Additional information

ArXiv ePrint: 1204.1065

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YH., Jejjala, V. & Rodriguez-Gomez, D. Brane geometry and dimer models. J. High Energ. Phys. 2012, 143 (2012). https://doi.org/10.1007/JHEP06(2012)143

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)143

Keywords

Navigation