Skip to main content
Log in

The beta ansatz: a tale of two complex structures

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Brane tilings, sometimes called dimer models, are a class of bipartite graphs on a torus which encode the gauge theory data of four-dimensional SCFTs dual to D3-branes probing toric Calabi-Yau threefolds. An efficient way of encoding this information exploits the theory of dessin d’enfants, expressing the structure in terms of a permutation triple, which is in turn related to a Belyi pair, namely a holomorphic map from a torus to a \( {\mathbb{P}^1} \) with three marked points. The procedure of a-maximization, in the context of isoradial embeddings of the dimer, also associates a complex structure to the torus, determined by the R-charges in the SCFT, which can be compared with the Belyi complex structure. Algorithms for the explicit construction of the Belyi pairs are described in detail. In the case of orbifolds, these algorithms are related to the construction of covers of elliptic curves, which exploits the properties of Weierstraß elliptic functions. We present a counter example to a previous conjecture identifying the complex structure of the Belyi curve to the complex structure associated with R-charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  4. A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [SPIRES].

  5. S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 3 [hep-th/0511287] [SPIRES].

    MathSciNet  Google Scholar 

  7. Y. Imamura, H. Isono, K. Kimura and M. Yamazaki, Exactly marginal deformations of quiver gauge theories as seen from brane tilings, Prog. Theor. Phys. 117 (2007) 923 [hep-th/0702049] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. Hanany and A. Zaffaroni, On the realization of chiral four-dimensional gauge theories using branes, JHEP 05 (1998) 001 [hep-th/9801134] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Hanany and A.M. Uranga, Brane boxes and branes on singularities, JHEP 05 (1998) 013 [hep-th/9805139] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Aganagic, A. Karch, D. Lüst and A. Miemiec, Mirror symmetries for brane configurations and branes at singularities, Nucl. Phys. B 569 (2000) 277 [hep-th/9903093] [SPIRES].

    Article  ADS  Google Scholar 

  11. K.D. Kennaway, Brane tilings, Int. J. Mod. Phys. A 22 (2007) 2977 [arXiv:0706.1660] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. M. Yamazaki, Brane tilings and their applications, Fortsch. Phys. 56 (2008) 555 [arXiv:0803.4474] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  13. V. Jejjala, S. Ramgoolam and D. Rodriguez-Gomez, Toric CFTs, permutation triples and Belyi pairs, JHEP 03 (2011) 065 [arXiv:1012.2351] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Grothendieck, Esquisse d’un programme, in Geometric Galois actions, L. Schneps and P. Lochak eds., London Math. Soc. Lecture Notes 242, Cambridge University Press, Cambridge U.K. (1997) 243.

    Google Scholar 

  15. S.K. Ashok, F. Cachazo and E. Dell’Aquila, Children’s drawings from Seiberg-Witten curves, hep-th/0611082 [SPIRES].

  16. M. Bauer and C. Itzykson, Triangulations, in The Grothendieck theory of dessins d’enfants, London Math. Soc. Lecture Notes 200, Cambridge University Press, Cambridge U.K. (1994).

    Google Scholar 

  17. E. Looijenga, Intersection theory on Deligne-Mumford compactifications, Séminaire Bourbaki 768 (1992).

  18. R.d.M. Koch and S. Ramgoolam, From matrix models and quantum fields to Hurwitz space and the absolute Galois group, arXiv:1002.1634 [SPIRES].

  19. R. Gopakumar, What is the simplest gauge-string duality?, arXiv:1104.2386 [SPIRES].

  20. S.K. Lando and A.K. Zvonkin, Graphs on surfaces and their applications, Springer, Berlin Germany (2003).

    Google Scholar 

  21. G. Belyi, On Galois extensions of a maximal cyclotomic field, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 43 (1979) 267.

    MathSciNet  MATH  Google Scholar 

  22. L. Schneps, Dessins d’enfants on the Riemann sphere, in The Grothendieck theory of dessins d’enfants, London Math. Soc. Lecture Notes 200, Cambridge University Press, Cambridge U.K. (1994).

    Chapter  Google Scholar 

  23. L. Zapponi, Dessins d’enfants en genre 1, in Geometric Galois actions, L. Schneps and P. Lochak eds., London Math. Soc. Lecture Notes 242, Cambridge University Press, Cambridge U.K. (1997) 243.

    Google Scholar 

  24. J.M. Couveignes and L. Granboulan, Dessins from a geometric point of view, in the Grothendieck theory of dessins d’enfants, London Math. Soc. Lecture Notes 200, Cambridge University Press, Cambridge U.K. (1994).

    Google Scholar 

  25. M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [SPIRES].

  26. A. Hanany, D. Orlando and S. Reffert, Sublattice counting and orbifolds, JHEP 06 (2010) 051 [arXiv:1002.2981] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. J. Davey, A. Hanany and R.-K. Seong, Counting orbifolds, JHEP 06 (2010) 010 [arXiv:1002.3609] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Hanany and R.-K. Seong, Symmetries of abelian orbifolds, JHEP 01 (2011) 027 [arXiv:1009.3017] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Hanany, V. Jejjala, S. Ramgoolam and R.-K. Seong, Calabi-Yau orbifolds and torus coverings — a reconnaissance, arXiv:1105.3471 [SPIRES].

  30. A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. N. Seiberg, Electric-magnetic duality in supersymmetric nonabelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP 08 (2001) 040 [hep-th/0104259] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Hanany, Y.H. He, V. Jejjala, J. Pasukonis, S. Ramgoolam, and D. Rodriguez-Gomez, work in progress.

  35. J. Davey, A. Hanany and J. Pasukonis, On the classification of brane tilings, JHEP 01 (2010) 078 [arXiv:0909.2868] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. J. Stienstra, Hypergeometric systems in two variables, quivers, dimers and dessins d’enfants, arXiv:0711.0464 [SPIRES].

  37. A.W. Knapp, Elliptic curves, Princeton University Press, New York U.S.A. (1992).

    MATH  Google Scholar 

  38. R. Kenyon, An introduction to the dimer model, math.CO/0310326

  39. K.A. Intriligator and B. Wecht, The exact superconformal R-symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. R. Hartshorne, Algebraic geometry, Springer Verlag, Berlin Germany (1977).

    MATH  Google Scholar 

  41. S. Kachru and E. Silverstein, 4d conformal theories and strings on orbifolds, Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four dimensions, Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. D.J. Gross and W. Taylor, Twists and Wilson loops in the string theory of two-dimensional QCD, Nucl. Phys. B 403 (1993) 395 [hep-th/9303046] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. P. Du Val, Elliptic functions and elliptic curves, London Math. Soc. Lecture Notes 9, Cambridge University Press, Cambridge U.K. (1973).

    MATH  Google Scholar 

  45. S. Wolphram, W olfram functions site, http://functions.wolfram.com/EllipticFunctions/WeierstrassP/

  46. A. Bostan, F. Morain, B. Salvy, and E. Schost, Fast algorithms for computing isogenies between elliptic curves, Mathematics of Computation 77 (2008) 1755.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. S. Wolphram, Quartic curve, http://mathworld.wolfram.com/QuarticCurve.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Jejjala.

Additional information

ArXiv ePrint: 1104.5490

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanany, A., He, YH., Jejjala, V. et al. The beta ansatz: a tale of two complex structures. J. High Energ. Phys. 2011, 56 (2011). https://doi.org/10.1007/JHEP06(2011)056

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)056

Keywords

Navigation