Skip to main content
Log in

Signatures of quantum geometry from exponential corrections to the black hole entropy

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

It has been recently shown in Chatterjee and Ghosh (Phys Rev Lett 125:041302, 2020, https://doi.org/10.1103/PhysRevLett.125.041302) that microstate counting carried out for quantum states residing on the horizon of a black hole leads to a correction of the form \(\exp (-A/4l_p^2)\) in the Bekenstein-Hawking form of the black hole entropy. In this paper, we develop a novel approach to obtain the possible form of the spacetime geometry from the entropy of the black hole for a given horizon radius. The uniqueness of this solution for a given energy-momentum tensor has also been discussed. Remarkably, the black hole geometry reconstructed has striking similarities to that of noncommutative-inspired Schwarzschild black holes (Nicolini et al. in Phys Lett B 632:547, 2006). We also obtain the matter density functions using Einstein field equations for the geometries we reconstruct from the thermodynamics of black holes. These also have similarities to that of the matter density function of a noncommutative-inspired Schwarzschild black hole. The conformal structure of the metric is briefly discussed and the Penrose–Carter diagram is drawn. We then compute the Komar energy and the Smarr formula for the effective black hole geometry and compare it with that of the noncommutative-inspired Schwarzschild black hole. We also discuss some astrophysical implications of the solutions. Finally, we propose a set of quantum Einstein vacuum field equations, as a solution of which we obtain one of the spacetime solutions obtained in this work. We then show a direct connection between the quantum Einstein vacuum field equations and the first law of black hole thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The manuscript has no data associated with it.

Notes

  1. Note that we are considering black holes where the line element is given as \(ds^2=-f(r)dt^2+\frac{1}{f(r)}dr^2+r^2d\Omega ^2\).

  2. In [27], the exponential corrections were shown to be dominant for microscopic black holes. In case of such a black hole, \(r-\tilde{r}_+\) is a very small quantity for which one can generally use the near horizon expansion while computing \(r_*\). One obtains \(r_*=\frac{1}{f'(\tilde{r}_+)}\left( r+\ln \left| \frac{r}{\tilde{r}_+}-1\right| \right) \). Hence, again \(r_*\) goes to zero in the \(r\rightarrow 0\) limit.

References

  1. Einstein, A.: Die Feldgleichungen der Gravitation, Sitzungsber Preuss Akad Wiss, p. 844 (1915)

  2. Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769 (1916). https://doi.org/10.1002/andp.19163540702

    Article  Google Scholar 

  3. Bekenstein, J.D.: Black holes and the second law. Lett. Nuovo Cimento 4, 737 (1972). https://doi.org/10.1007/BF02757029

    Article  ADS  Google Scholar 

  4. Bekenstein, J.D.: Black Holes and Entropy. Phys. Rev. D 7, 2333 (1973). https://doi.org/10.1103/PhysRevD.7.2333

    Article  ADS  MathSciNet  Google Scholar 

  5. Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974). https://doi.org/10.1038/248030a0

    Article  ADS  Google Scholar 

  6. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys 43, 199 (1975). https://doi.org/10.1007/BF02345020

    Article  ADS  MathSciNet  Google Scholar 

  7. Hawking, S.W.: Black holes and thermodynamics. Phys. Rev. D 13, 191 (1976). https://doi.org/10.1103/PhysRevD.13.191

    Article  ADS  Google Scholar 

  8. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973). https://doi.org/10.1007/BF01645742

    Article  ADS  MathSciNet  Google Scholar 

  9. Amati, D., Ciafaloni, M., Veneziano, G.: Can spacetime be probed below the string size? Phys. Lett. B. 216, 41 (1989). https://doi.org/10.1016/0370-2693(89)91366-X

    Article  ADS  Google Scholar 

  10. Konishi, K., Paffuti, G., Provero, P.: Minimum physical length and the generalized uncertainty principle in string theory. Phys. Lett. B 234, 276 (1990). https://doi.org/10.1016/0370-2693(90)91927-4

    Article  ADS  MathSciNet  Google Scholar 

  11. Rovelli, C.: Loop quantum gravity. Living. Rev. Relativ. 1, 1 (1998). https://doi.org/10.12942/lrr-1998-1

    Article  ADS  MathSciNet  Google Scholar 

  12. Carlip, S.: Quantum gravity: a progress report. Rep. Prog. Phys. 64, 885 (2001). https://doi.org/10.1088/0034-4885/64/8/301

    Article  ADS  MathSciNet  Google Scholar 

  13. Girelli, F., Livine, E.R., Oriti, D.: Deformed special relativity as an effective flat limit of quantum gravity. Nucl. Phys. B 708, 411 (2005). https://doi.org/10.1016/j.nuclphysb.2004.11.026

    Article  ADS  MathSciNet  Google Scholar 

  14. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein–Hawking entropy. Phys. Lett. B 379, 99 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dijkgraaf, R., Verlinde, E.P., Verlinde, H.L.: Counting dyons in N = 4 string theory. Nucl. Phys. B 484, 543 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ashtekar, A., Baez, J., Corichi, A., Krasnov, K.: Quantum geometry and black hole entropy. Phys. Rev. Lett. 80, 904 (1998). https://doi.org/10.1103/PhysRevLett.80.904

    Article  ADS  MathSciNet  Google Scholar 

  17. Kaul, R.K., Majumdar, P.: Logarithmic correction to the Bekenstein–Hawking entropy. Phys. Rev. Lett. 84, 5255 (2000). https://doi.org/10.1103/PhysRevLett.84.5255

    Article  ADS  MathSciNet  Google Scholar 

  18. Domagala, M., Lewandowski, J.: Black-hole entropy from quantum geometry. Class. Quantum Gravit. 21, 5233 (2004). https://doi.org/10.1088/0264-9381/21/22/014

    Article  ADS  MathSciNet  Google Scholar 

  19. Meissner, K.A.: Black-hole entropy in loop quantum gravity. Class. Quantum Gravit. 21, 5245 (2004). https://doi.org/10.1088/0264-9381/21/22/015

    Article  ADS  MathSciNet  Google Scholar 

  20. Ghosh, A., Mitra, P.: An improved estimate of black hole entropy in the quantum geometry approach. Phys. Lett. B 616, 114 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Mandal, I., Sen, A.: Black hole microstate counting and its macroscopic counterpart*. Class. Quantum Gravit. 27, 214003 (2010). https://doi.org/10.1088/0264-9381/27/21/214003

    Article  ADS  MathSciNet  Google Scholar 

  22. Banerjee, R., Gangopadhyay, S., Modak, S.K.: Voros product, noncommutative Schwarzschild black hole and corrected area law. Phys. Lett. B 686, 181 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. Dabholkar, A., Gomes, J., Murthy, S.: Counting all dyons in \(\cal{N} \)=4 string theory. J. High Energy Phys. 2011, 59 (2011). https://doi.org/10.1007/JHEP05(2011)059

    Article  MathSciNet  Google Scholar 

  24. Gangopadhyay, S., Roychowdhury, D.: Corrected area law and Komar energy for noncommutative inspired Reissner–Nordström black hole. Int. J. Mod. Phys. A 27, 1250041 (2012). https://doi.org/10.1142/S0217751X12500418

    Article  ADS  Google Scholar 

  25. Gangopadhyay, S.: Voros product and noncommutative inspired black holes. Mod. Phys. Lett. A 28, 1350030 (2013). https://doi.org/10.1142/S0217732313500302

    Article  ADS  MathSciNet  Google Scholar 

  26. Dabholkar, A., Gomes, J., Murthy, S.: Nonperturbative black hole entropy and Kloosterman sums. J. High Energy Phys. 2015, 74 (2015). https://doi.org/10.1007/JHEP03(2015)074

    Article  MathSciNet  Google Scholar 

  27. Chatterjee, A., Ghosh, A.: Nonperturbative black hole entropy and Kloosterman sums. Phys. Rev. Lett. 125, 041302 (2020). https://doi.org/10.1103/PhysRevLett.125.041302

    Article  ADS  MathSciNet  Google Scholar 

  28. Rovelli, C.: Quantum Gravity (Cambridge Monographs on Mathematical Physics). Cambridge University Press, Cambridge

  29. Doplicher, S., Fredenhagen, K., Roberts, J.E.: Spacetime quantization induced by classical gravity. Phys. Lett. B 331, 39 (1994). https://doi.org/10.1016/0370-2693(94)90940-7

    Article  ADS  MathSciNet  Google Scholar 

  30. Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187 (1995). https://doi.org/10.1007/BF02104515

    Article  ADS  MathSciNet  Google Scholar 

  31. Douglas, M.R., Nekrasov, N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977 (2001). https://doi.org/10.1103/RevModPhys.73.977

    Article  ADS  MathSciNet  Google Scholar 

  32. Nicolini, P., Smailagic, A., Spallucci, E.: Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. B 632, 547 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. Ansoldi, S., Nicolini, P., Smailagic, A., Spalucci, E.: Non-commutative geometry inspired charged black holes. Phys. Lett. B 645, 261 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. Chaichian, M., Tureanu, A., Zet, G.: Corrections to Schwarzschild solution in noncommutative gauge theory of gravity. Phys. Lett. B 660, 573 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  35. Nicolini, P.: Noncommutative black holes, the final appeal to quantum gravity: a review. Int. J. Mod. Phys. A 24, 1229 (2009). https://doi.org/10.1142/S0217751X09043353

    Article  ADS  MathSciNet  Google Scholar 

  36. Banerjee, R., Gangopadhyay, S.: Komar energy and Smarr formula for noncommutative inspired Schwarzschild black hole. Gen. Relativ. Gravit. 43, 3201 (2011). https://doi.org/10.1007/s10714-011-1250-2

    Article  ADS  MathSciNet  Google Scholar 

  37. Voros, A.: Wentzel-Kramers-Brillouin method in the Bargmann representation. Phys. Rev. A 40, 6814 (1989). https://doi.org/10.1103/PhysRevA.40.6814

    Article  ADS  MathSciNet  Google Scholar 

  38. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Academic Press, Amsterdam (2007)

    Google Scholar 

  39. Arraut, I., Batic, D., Nowakowski, M.: Maximal extension of the Schwarzschild space-time inspired by noncommutative geometry. J. Math. Phys. 51, 022503 (2010). https://doi.org/10.1063/1.3317913

    Article  ADS  MathSciNet  Google Scholar 

  40. Jacobson, T.: Thermodynamics of Spacetime: The Einstein Equation of State. Phys. Rev. Lett. 75, 1260 (1995). https://doi.org/10.1103/PhysRevLett.75.1260

    Article  ADS  MathSciNet  Google Scholar 

  41. Arbey, A., Auffinger, J., Geiller, M., Livine, E.R., Sartini, F.: Hawking radiation by spherically-symmetric static black holes for all spins: Teukolsky equations and potentials. Phys. Rev. D 103, 104010 (2021). https://doi.org/10.1103/PhysRevD.103.104010

    Article  ADS  MathSciNet  Google Scholar 

  42. Morris, M.S., Thorne, K.S.: Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56, 395 (1988). https://doi.org/10.1119/1.15620

    Article  ADS  MathSciNet  Google Scholar 

  43. Graves, J.C., Brill, D.R.: Oscillatory Character of Reissner-Nordström Metric for an Ideal Charged Wormhole. Phys. Rev. 120, 1507 (1960). https://doi.org/10.1103/PhysRev.120.1507

    Article  ADS  MathSciNet  Google Scholar 

  44. Komar, A.: Covariant conservation laws in general relativity. Phys. Rev. 113, 934 (1959). https://doi.org/10.1103/PhysRev.113.934

    Article  ADS  MathSciNet  Google Scholar 

  45. Wald, R.M.: General Relativity. University Press, Chicago (1984)

    Book  Google Scholar 

  46. Smarr, L.: Mass formula for Kerr black holes. Phys. Rev. Lett. 30, 71 (1973). https://doi.org/10.1103/PhysRevLett.30.71. (Erratum, https://doi.org/10.1103/PhysRevLett.30.521 Phys. Rev. Lett. 30 (1973) 521)

  47. Padmanabhan, T.: Gravitation: Foundations and Frontiers. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

Download references

Acknowledgements

We thank the referees for making useful and valuable comments which have helped us to improve the manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunandan Gangopadhyay.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Apppendix 1: Quantum corrected Einstein equations for \(h(r)=r^2\)

In the earlier part of our analysis after obtaining Eq. (37), we have considered the classical Einstein equation with matter density function \(\rho (r)\) given in Eq. (48) to prove the uniqueness of our solution. In this section, we look for quantum corrections to the Einstein equations. We now propose a set of modified Einstein vacuum field equations. The quantum Einstein vacuum field equations involving the \(\{t,t\}\) and \(\{r,r\}\) components of the quantum modified Einstein tensor \(\bar{G}_{tt}\) and \(\bar{G}_{rr}\) are proposed as follows

$$\begin{aligned} \begin{aligned} r^2f(r)\bar{G}_{tt}=-r^2f(r)\bar{G}_{rr}=0 \end{aligned} \end{aligned}$$
(89)

where

$$\begin{aligned} r^2f(r)\bar{G}_{tt}=\left[ 1-f(r)-rf'(r)\right] -\left( 1+\frac{l_p^2}{2\pi r^2}\right) e^{-\frac{\pi r^2}{l_p^2}}. \end{aligned}$$
(90)

Similarly, the other two quantum modified vacuum field equations are proposed as

$$\begin{aligned} \begin{aligned} \bar{G}_{\theta \theta }=-\frac{1}{\sin ^2\theta }\bar{G}_{\phi \phi }=0 \end{aligned} \end{aligned}$$
(91)

where

$$\begin{aligned} \bar{G}_{\theta \theta }=\frac{r}{2}(2f'(r)+rf''(r))-\left( \frac{\pi r^2}{l_p^2}+\frac{1}{2}+\frac{l_p^2}{2\pi r^2}\right) e^{-\frac{\pi r^2}{l_p^2}}. \end{aligned}$$
(92)

In Eqs. (89, 91), \(\bar{G}_{tt}\), \(\bar{G}_{rr}\), \(\bar{G}_{\theta \theta }\), and \(\bar{G}_{\phi \phi }\) denotes the quantum modified Einstein tensor. Solving Eq. (89) or Eq. (91) perturbatively, we obtain the form of the metric f(r) given in Eq. (37). It is important to observe that both Eqs. (89, 91) are vacuum field equations.

It is important to note that there are no solid justifications for the quantum Einstein equations in Eqs. (8992) at this moment. In order to obtain the quantum corrections, we have absorbed the energy-momentum tensor into the left hand side of the Einstein field equations and proposed the resultant object as the quantum vacuum Einstein field equation giving rise to the solution f(r) in Eq. (37).

Appendix 2: Quantum corrected Einstein equations and its connection to the first law of black hole thermodynamics for \(h(r)=r^2\)

We shall now exploit the analytical form of \(r^2f(r)\bar{G}_{rr}\) given in Eq. (89) around the horizon radius \(\tilde{r}_+\) given in Eq. (23). In the limit \(r\rightarrow \tilde{r}_+\), Eq. (89) can be expressed (upto \(\mathcal {O}\left( \exp \left( -\pi r_+^2/l_p^2\right) \right) \)) as follows

$$\begin{aligned} \tilde{r}_+f'(\tilde{r}_+)-1+\left( 1+\frac{l_p^2}{2\pi r_+^2}\right) e^{-\frac{\pi r_+^2}{l_p^2}}=0. \end{aligned}$$
(93)

We now multiply both sides of the above equation with \(\frac{c^4}{2G}d\tilde{r}_+\) and obtain the following relation

$$\begin{aligned} \frac{c^4}{2G}f'(\tilde{r}_+)\tilde{r}_+d\tilde{r}_+&\simeq \frac{c^4}{2G}\left[ d\tilde{r}_+-\left( 1+\frac{l_p^2}{2\pi r_+^2}\right) e^{-\frac{\pi r_+^2}{l_p^2}}dr_+\right] \nonumber \\&=\frac{c^4}{2G}dr_+\nonumber \\&=c^2dM. \end{aligned}$$
(94)

The left hand side of the above equation can be rearranged as

$$\begin{aligned} \frac{c^4}{2G}f'(\tilde{r}_+)\tilde{r}_+d\tilde{r}_+=\left( \frac{\hbar cf'(\tilde{r}_+)}{4\pi k_B}\right) \frac{k_Bc^3}{4\hbar G}d(4\pi \tilde{r}_+^2). \end{aligned}$$
(95)

In this relation the term in the parenthesis is the temperature of the black hole whose metric is given by Eq. (37). Invoking the form of the horizon from Eq. (23), we finally obtain the following relation

$$\begin{aligned} Td\left( \frac{k_BA}{4l_p^2}-k_Be^{-\frac{A}{4l_p^2}}\right) =c^2dM \end{aligned}$$
(96)

where we have identified \(A=4\pi r_+^2\) with \(r_+\) being the usual Schwarzschild radius. Now from Eq. (18), we can see that for \(n=0\) case, the modified entropy formula is \(S=\frac{k_BA}{4l_p^2}-k_Be^{-\frac{A}{4l_p^2}}\). With this identification, we can recast Eq. (96) given as

$$\begin{aligned} TdS=c^2dM=dE \end{aligned}$$
(97)

which is the usual first law of black hole thermodynamics. The above analysis establishes a direct connection between geometry and thermodynamics [47]. It is also important to identify that the pressure term at the horizon is zero leading to the conclusion that we are dealing with a vacuum field equation. This indeed is a nice consistency check of the proposed quantum Einstein equations in Eqs. (89, 92).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Saha, A. & Gangopadhyay, S. Signatures of quantum geometry from exponential corrections to the black hole entropy. Gen Relativ Gravit 56, 57 (2024). https://doi.org/10.1007/s10714-024-03241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03241-9

Keywords

Navigation