Skip to main content
Log in

Remarks on the cosmological constant appearing as an initial condition for Milne-like spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

A Correction to this article was published on 07 November 2022

This article has been updated

Abstract

Milne-like spacetimes are a class of \(k = -1\) FLRW spacetimes which admit continuous spacetime extensions through the big bang. In a previous paper Ling (Found. of Phys. 50:385–428, 2020), it was shown that the cosmological constant appears as an initial condition for Milne-like spacetimes. In this paper, we generalize this statement to spacetimes which share similar geometrical properties with Milne-like spacetimes but without the strong spatially isotropic assumption associated with them. We show how our results yield a “quasi de Sitter” expansion for the early universe which could have applications to inflationary scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

This manuscript has no associated data.

Change history

Notes

  1. These extensions have been noted previously in the physics literature, see e.g. [9].

  2. Using similar arguments as in [15, Appendix B], one can show that Milne-like spacetimes actually admit Lipschitz spacetime extensions through the big bang. This should be compared with the results in [37].

  3. See [14, Thm. 2.6] for a proof. The proof generalizes to the class of timelike curves considered in this paper since it only uses the openness of \(I^\pm \) which follows from [29, Thm. 2.12]. Moreover, the “topological hypersurface” part of the conclusion follows from [29, Thm. A.6].

  4. Our convention for the mean curvature H, which includes the 1/3 factor in front of \(\text {tr}(K)\), coincides with the Hubble parameter, \(a'/a\), which is also denoted by H in the physics literature.

References

  1. Hau, Luis Aké, Pacheco, Armando J Cabrera., Solis, Didier A.: On the causal hierarchy of Lorentzian length spaces. Class. Quantum Grav. 37, 215013 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Allen, Brian, Burtscher, Annegret: Properties of the Null Distance and Spacetime Convergence. International Mathematics Research Notices 2022(10), 7729–7808 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Stephanie, B. Alexander, Graf, Melanie, Kungzinger, Michael, ämann, Clemens S.: Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems, preprint arXiv:1909.09575, to appear in Comm. Anal. Geom. (2021)

  4. Barbour, Julian: The Janus Point: A New Theory of Time. Basic Books, New York (2020)

    Google Scholar 

  5. Barbour, Julian, Koslowski, Tim, Mercati, Flavio: Identification of a Gravitational Arrow of Time. Phys. Rev. Lett. 113, 181101 (2014)

    Article  ADS  Google Scholar 

  6. Burtscher Annegret, García-Heveling, Leonardo: Time functions on Lorentzian length spaces, preprint arXiv:2108.02693, (2021)

  7. Chruściel, Piotr T., Grant, James D. E.: On Lorentzian causality with continuous metrics. Class. Quantum Grav. 29, 145001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chruściel, Piotr T., Klinger, Paul: The annoying null boundaries. J. Phys: Conf. Ser. 968, 012003 (2018)

    MathSciNet  Google Scholar 

  9. Coleman, Sidney, De Luccia, Frank: Gravitational effects on and of vacuum decay. Phys. Rev. D. 21, 295–305 (1980)

    Article  MathSciNet  Google Scholar 

  10. Ellis, George FR.: Republication of: Relativistic cosmology. Gen. Relativ. Gravit 41, 581–660 (2009)

  11. Ellis, George F.R.., van Elst, Henk: Cosmological models (Cargèse lectures 1998. NATO Adv. Study Inst. Ser. C, Math. Phys. Sci 541, 3315 (1999)

    Google Scholar 

  12. Frankel, Theodore, Curvature, Gravitation: An Introduction to Einstein’s Theory. W.H. Freeman, San Francisco (1979)

    Google Scholar 

  13. García-Heveling, Leonardo: Causality theory of spacetimes with continuous Lorentzian metrics revisited. Class. Quantum Grav. 38, 145028 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Galloway, Gregory J., Ling, Eric: Some remarks on the \(C^0\)-inextendibility of spacetimes. Ann. H. Poincaré 18, 3427–3447 (2017)

    Article  MATH  Google Scholar 

  15. Galloway, Gregory J.: Melanie Graf, and Eric Ling, A conformal approach to \({AdS}_2\times S^{n-1}\) spacetimes. Ann. H. Poincaré 21, S119–S128 (2020)

    Article  Google Scholar 

  16. Galloway, Gregory, Ling, Eric, Sbierski, Jan: Timelike completeness as an obstruction to \(C^0\)-extensions. Comm. Math. Phys. 359, 937–949 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Graf, Melanie: Singularity theorems for \(C^1\)-Lorentzian metrics. Comm. Math. Phys. 378, 1417–1450 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Graf, Melanie, Grant, James D.E.., Kunzinger, Michael, Steinbauer, Roland: The Hawking-Penrose singularity theorem for \(C^{1,1}\)-Lorentzian metrics. Comm. Math. Phys. 360, 1009–1042 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Graf, Melanie, Ling, Eric: Maximizers in Lipschitz spacetimes are either timelike or null. Class. Quantum Grav. 35, 087001 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Grant, James DE.: Michael Kunzinger, Clemens Sämann, and Roland Steinbauer, The future is not always open. Letters in Math. Phys. 110, 3–2020 (2020)

    Article  Google Scholar 

  21. Hawking, Stephen W., Ellis, George F. R..: The large scale structure of space-time. Cambridge University Press, London-New York (1973)

  22. Kungzinger, Michael, Sämann, Clemens: Lorentzian length spaces. Ann. Global Anal. Geom. 54, 399–447 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kunzinger, Michael, Steinbauer, RolandP: Null distance and convergence of Lorentzian length spaces, preprint arXiv: arXiv:2106.05393, (2021)

  24. Kungzinger, Michael, Steinbauer, Roland, Stojković, Milena, Vickers, James A.: Hawking’s singularity theorem for \(C^{1,1}\)-metrics. Class. Quantum Grav. 32, 075012 (2015)

    Article  ADS  MATH  Google Scholar 

  25. Kungzinger, Michael, Steinbauer, Roland, Vickers, James A.: The Penrose singularity theorem in regularity \(C^{1,1}\). Class. Quantum Grav. 32, 155010 (2015)

    Article  ADS  MATH  Google Scholar 

  26. Lange, Christian, Lytchak, Alexander, Sämann, Clemens, Lorentz meets Lipschitz, preprint arXiv:2009.08834, (2020)

  27. Lesourd, Martin, Minguzzi, Ettore: Low regularity extensions beyond Cauchy horizons, preprint arXiv:2110.07388, (2022)

  28. Liddle, Andrew: An introduction to Modern cosmology, 3rd edn. Wiley Books, West Sussex (2015)

    Google Scholar 

  29. Ling, Eric: Aspects of \(C^0\) causal theory, Gen. Relativ. Gravit 52 (2020)

  30. Ling, Eric: The Big Bang is a Coordinate Singularity for \(k = -1\) Inflationary FLRW Spacetimes. Found. of Phys. 50, 385–428 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. McCann, Robert J., Sámann, Clemens: A Lorentzian analog for Hausdorff dimension and measure, preprint arXiv:2110.04386, (2021)

  32. Minguzzi, Ettore: Causality theory for closed cone structures with applications. Rev. Math. Phys. 31, 1930001 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Minguzzi, Ettore, Suhr, Stefan: Some regularity results for Lorentz-Finsler spaces. Ann. Glob. Anal. Geom. 56, 597–611 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. O’Neill, Barrett, Geometry, Semi-Riemannian.: Pure and Applied Mathematics, vol. 103. Academic Press Inc., New York (1983)

    Google Scholar 

  35. Sämann, Clemens: Global hyperbolicity for spacetimes with continuous metrics. Ann. H. Poincaré 17, 1429–1455 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sämann, Clemens, Steinbauer, Roland: On geodeiscs in low regularity. J. Phys: Conf. Ser. 968, 012010 (2018)

    MathSciNet  Google Scholar 

  37. Sbierski, Jan: On holonomy singularities in general relativity and the \(C^{0,1}_{\rm loc}\)-inextendibility of spacetimes, preprint arXiv:2007.12049, (2021)

  38. Sbierski, Jan: The \(C^0\)-inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian geometry. J. Diff. Geom. 108, 319–378 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Sbierski, Jan: On the proof of the \(C^0\)-inextendibility of the Schwarzschild spacetime. J. Phys: Conf. Ser. 968, 012012 (2018)

    MathSciNet  Google Scholar 

  40. Schinnerl, Benedict, Steinbauer, Roland: A note on the Gannon-Lee theorem. Let. Math. Phys. 111, 1–17 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Sormani, Christina, Vega, Carlos: Null distance on a spacetime. Class. Quantum Grav. 33, 085001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Vega, Carlos: Spacetime distances: an exploration, preprint arXiv:2103.01191, (2021)

  43. Weinberg, Steven: Cosmology. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges being supported by the Harold H. Martin Postdoctoral Fellowship at Rutgers University. He thanks Greg Galloway for many helpful comments and pointing out references [10, 11]. He thanks two anonymous reviewers who greatly improved the quality of the paper. Lastly, he thanks the organizers of Singularity theorems, causality, and all that; a tribute to Roger Penrose for putting together a stimulating conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Ling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Topical Collection: Singularity theorems, causality, and all that (SCRI21).

The original online version of this article was revised due to a retrospective Open Access cancellation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, E. Remarks on the cosmological constant appearing as an initial condition for Milne-like spacetimes. Gen Relativ Gravit 54, 68 (2022). https://doi.org/10.1007/s10714-022-02955-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02955-y

Keywords

Navigation