Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 107))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AH 21-132:

cis-6-(p-acetamidophenyl)-1,2,3,4,4a, 10b-hexahydro-8,9-dimethoxy-2-methyl-benzo[c] [1,6]-naphthyridine

4-AP:

4-aminopyridine

Bay K 8644:

methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoro-methylphenyl)-pyridine-5-carboxylate

B-HT 920:

6-allyl-2-amino-5,6,7,8-tetrahydro-4H-thiazolo-[4,5-d]-azepine

EGTA:

ethyleneglycol-bis-(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

IAP:

islet-activating protein

IBMX:

3-isobutyl-1-methylxanthine

ICI 63,197:

2-amino-6-methyl-5-oxo-4-n-propyl-4,5-dihydro-s-triazolo [1,5-a]pyrimidine

LSD:

lysergic acid diethylamide

α-MT:

α-methyl-p-tyrosine

5-OCH3-T:

5-methoxy-tryptamine

TEA:

tetraethylammonium

References

  • Abdel Rahman ARA, Sharabi FM (1981) Presynaptic alpha receptors in relation to the cardiovascular effect of yohimbine in the anesthetized cat. Arch int Pharmacodyn Ther 252:229–240

    PubMed  Google Scholar 

  • Aghajanian GK, Wang YY (1986) Pertussis toxin blocks the outward currents evoked by opiate and α2-agonists in locus coeruleus neurons. Brain Res 371:390–394

    Article  PubMed  Google Scholar 

  • Alabaster VA, Keir RF, Peters CJ (1985) Comparison of activity of alpha-adrenoceptor agonists and antagonists in dog and rabbit saphenous vein. Naunyn-Schmiedeberg's Arch Pharmacol 330:33–36

    Article  Google Scholar 

  • Alberts P, Stjärne L (1982) Facilitation, and muscarinic and α-adrenergic inhibition of the secretion of 3H-acetylcholine and 3H-noradrenaline from guinea-pig ileum myenteric nerve terminals. Acta Physiol Scand 116:83–92

    PubMed  Google Scholar 

  • Alberts P, Bartfai T, Stjärne L (1981) Site(s) and ionic basis of α-autoinhibition and facilitation of [3H]noradrenaline secretion in guinea-pig vas deferens. J Physiol (Lond) 312:297–334

    PubMed  Google Scholar 

  • Alberts P, Ögren VR, Sellström ÅI (1985) Role of adenosine 3′,5′-cyclic monophosphate in adrenoceptor-mediated control of 3H-noradrenaline secretion in guinea-pig ileum myenteric nerve terminals. Naunyn-Schmiedeberg's Arch Pharmacol 330:114–120

    Article  Google Scholar 

  • Algate DR, Waterfall JF (1978) Action of indoramin on pre-and postsynaptic α-adrenoceptors in pithed rats. J Pharm Pharmacol 30:651–652

    PubMed  Google Scholar 

  • Allgaier C, Hertting G (1986a) Involvement of protein kinase C in the modulation of noradrenaline release via α2-adrenoceptors. Naunyn-Schmiedeberg's Arch Pharmacol 332:R78

    Google Scholar 

  • Allgaier C, Hertting G (1986b) Polymyxin B, a selective inhibitor of protein kinase C, diminishes the release of noradrenaline and the enhancement of release caused by phorbol 12,13-dibutyrate. Naunyn-Schmiedeberg's Arch Pharmacol 334:218–221

    Article  Google Scholar 

  • Allgaier C, Feuerstein TJ, Jackisch R, Hertting G (1985) Islet-activating protein (pertussis toxin) diminishes α2-adrenoceptor mediated effects on noradrenaline release. Naunyn-Schmiedeberg's Arch Pharmacol 331:235–239

    Article  Google Scholar 

  • Allgaier C, Feuerstein TJ, Hertting G (1986a) N-ethylmaleimide (NEM) diminishes α2-adrenoceptor mediated effects on noradrenaline release. Naunyn-Schmiedeberg's Arch Pharmacol 333:104–109

    Article  Google Scholar 

  • Allgaier C, von Kügelgen O, Hertting G (1986b) Enhancement of noradrenaline release by 12-0-tetradecanoyl phorbol-13-acetate, an activator of protein kinase C. Eur J Pharmacol 129:389–392

    Article  PubMed  Google Scholar 

  • Alonso FG, Ceña V, García AG, Kirpekar SM, Sánchez-García P (1982) Presence and axonal transport of cholinoceptor, but not adrenoceptor sites on a cat noradrenergic neurone. J Physiol (Lond) 333:595–618

    PubMed  Google Scholar 

  • Andrade R, Aghajanian GK (1985) Opiate-and α2-adrenoceptor-induced hyperpolarizations of locus ceruleus neurons in brain slices: reversal by cyclic adenosine 3′:5′-monophosphate analogues. J Neurosci 5:2359–2364

    PubMed  Google Scholar 

  • Angus JA, Korner PI (1980) Evidence against presynaptic α-adrenoceptor modulation of cardiac sympathetic transmission. Nature 286:288–291

    Article  PubMed  Google Scholar 

  • Angus JA, Bobik A, Jackman GP, Kopin IJ, Korner PI (1984) Role of auto-inhibitory feed-back in cardiac sympathetic transmission assessed by simultaneous measurements of changes in 3H-efflux and atrial rate in guinea-pig atrium. Br J Pharmacol 81:201–214

    PubMed  Google Scholar 

  • Antonaccio MJ, Halley J, Kerwin L (1974) Functional significance of α-stimulation and α-blockade on responses to cardiac nerve stimulation in anesthetized dogs. Life Sci 15:765–777

    Article  PubMed  Google Scholar 

  • Asakura M, Tsukamoto T, Imafuku J, Matsui H, Ino M, Hasegawa K (1985) Quantitative analysis of rat brain α2-receptors discriminated by [3H] clonidine and [3H] rauwolscine. Eur J Pharmacol 106:141–147

    Article  Google Scholar 

  • Atlas D, Burstein Y (1984) Isolation and partial purification of a clonidine-displacing endogenous brain substance. Eur J Biochem 144:287–293

    Article  PubMed  Google Scholar 

  • Auch-Schwelk W, Starke K, Steppeler A (1983) Experimental conditions required for the enhancement by α-adrenoceptor antagonists of noradrenaline release in the rabbit ear artery. Br J Pharmacol 78:543–551

    PubMed  Google Scholar 

  • Baker DJ, Drew GM, Hilditch A (1984) Presynaptic α-adrenoceptors: do exogenous and neuronally released noradrenaline act at different sites? Br J Pharmacol 81:457–464

    PubMed  Google Scholar 

  • Baumann PA, Koella WP (1980) Feedback control of noradrenaline release as a function of noradrenaline concentration in the synaptic cleft in cortical slices of the rat. Brain Res 189:437–448

    Article  PubMed  Google Scholar 

  • Belis JA, Colby JE, Westfall DP (1982) Effects of α-adrenoceptor agents on norepinephrine release from vas deferens of several species including man. Eur J Pharmacol 78:487–490

    Article  PubMed  Google Scholar 

  • Belleau B, Benfey BG, Melchiorre C (1982) Presynaptic effect of clonidine antagonized by the tetramine disulphide, benextramine. Br J Pharmacol 75:617–621

    PubMed  Google Scholar 

  • Bevan JA, Tayo FM, Rowan RA, Bevan RD (1984) Presynaptic α-receptor control of adrenergic transmitter release in blood vessels. Fed Proc 43:1365–1370

    PubMed  Google Scholar 

  • Birch PJ, Fillenz M (1985) Stimulation of noradrenaline synthesis by the calcium ionophore A23187 and its modulation by presynaptic receptors. Neurosci Lett 62:187–192

    Article  PubMed  Google Scholar 

  • Blakeley AGH, Cunnane TC (1979) The packeted release of transmitter from the sympathetic nerves of the guinea-pig vas deferens: an electrophysiological study. J Physiol (Lond) 296:85–96

    PubMed  Google Scholar 

  • Blakeley AGH, Cunnane TC, Petersen SA (1981) An electropharmacological analysis of the effects of some drugs on neuromuscular transmission in the vas deferens of the guinea-pig. J Auton Pharmacol 1:367–375

    PubMed  Google Scholar 

  • Blakeley AGH, Cunnane TC, Petersen SA (1982) Local regulation of transmitter release from rodent sympathetic nerve terminals? J Physiol (Lond) 325:93–109

    PubMed  Google Scholar 

  • Blakeley AGH, Cunnane TC, Maskell T, Mathie A, Petersen SA (1984a) α-Adrenoreceptors and facilitation at a sympathetic neuroeffector junction. J Auton Pharmacol 4:53–58

    PubMed  Google Scholar 

  • Blakeley AGH, Mathie A, Petersen SA (1984b) Facilitation at single release sites of a sympathetic neuroeffector junction in the mouse. J Physiol (Lond) 349:57–71

    PubMed  Google Scholar 

  • Blakeley AGH, Mathie A, Petersen SA (1986) Interactions between the effects of yohimbine, clonidine and [Ca]o on the electrical response of the mouse vas deferens. Br J Pharmacol 88:807–814

    PubMed  Google Scholar 

  • Bokoch GM, Smigel M, Higashijima T, Gilman AG (1985) Guanine nucleotidebinding regulatory proteins as information transducers. In: Lefkowitz RJ, Lindenlaub E (eds) Adrenergic receptors: molecular properties and therapeutic implications. Schattauer, Stuttgart, pp 135–156

    Google Scholar 

  • Bonanno G, Raiteri M (1987) Interaction between 5-HT uptake inhibition and activation of 5-HT autoreceptors by exogenous agonists in rat cerebral cortex slices and synaptosomes. Naunyn-Schmiedeberg's Arch Pharmacol (in press)

    Google Scholar 

  • Bond RA, Charlton KG, Clarke DE (1986) Responses to norepinephrine resistant to inhibition by alpha and beta adrenoceptor antagonists. J Pharmacol Exp Ther 236:408–415

    PubMed  Google Scholar 

  • Bousquet P, Feldman J, Atlas D (1986) An endogenous, non-catecholamine clonidine antagonist increases mean arterial blood pressure. Eur J Pharmacol 124:167–170

    Article  PubMed  Google Scholar 

  • Bradberry CW, Adams RN (1986) α 2-Receptor control over release of noradrenaline in rat thalamus. Eur J Pharmacol 129:175–180

    Article  PubMed  Google Scholar 

  • Bradley L, Doggrell SA (1983) Effects of prazosin, phentolamine and yohimbine on noradrenergic transmission in the rat right ventricle in vitro. J Auton Pharmacol 3:27–36

    PubMed  Google Scholar 

  • Brown CM, McGrath JC, Summers RJ (1979) The effects of α-adrenoceptor agonists and antagonists on responses of transmurally stimulated prostatic and epididymal portions of the isolated vas deferens of the rat. Br J Pharmacol 66:553–564

    PubMed  Google Scholar 

  • Brown DA, Caulfield MP (1979) Hyperpolarizing ‘α 2'-adrenoceptors in rat sympathetic ganglia. Br J Pharmacol 65:435–445

    PubMed  Google Scholar 

  • Brown GL, Gillespie JS (1957) The output of sympathetic transmitter from the spleen of the cat. J Physiol (Lond) 138:81–102

    PubMed  Google Scholar 

  • Brown MJ, Harland D (1984) Evidence for a peripheral component in the sympatholytic effect of clonidine in rats. Br J Pharmacol 83:657–665

    PubMed  Google Scholar 

  • Brown MJ, Struthers AD, Burrin JM, Di Silvio L, Brown DC (1985) The physiological and pharmacological role of presynaptic α-and β-adrenoceptors in man. Br J clin Pharmacol 20:649–658

    PubMed  Google Scholar 

  • Browning MD, Huganir R, Greengard P (1985) Protein phosphorylation and neuronal function. J Neurochem 45:11–23

    PubMed  Google Scholar 

  • Bug W, Williams JT, North RA (1986) Membrane potential measured during potassium-evoked release of noradrenaline from rat brain neurons: effects of normorphine. J Neurochem 47:652–655

    PubMed  Google Scholar 

  • Canfield DR, Dunlap K (1984) Pharmacological characterization of amine receptors on embryonic chick sensory neurones. Br J Pharmacol 82:557–563

    PubMed  Google Scholar 

  • Carr SR, Fozard JR (1981) Lack of modulation by presynaptic α 2-adrenoceptors of adrenergic transmitter release evoked by activation of 5-hydroxytryptamine and nicotine receptors. Eur J Pharmacol 72:27–34

    Article  PubMed  Google Scholar 

  • Carter CJ, Dennis T, L'Heureux R, Scatton B (1986) Studies of the effects of idazoxan on cortical noradrenaline release in vivo, measured by transcortical dialysis. Br J Pharmacol 88:307P

    Google Scholar 

  • Cavero I, Dennis T, Lefèvre-Borg F, Perrot P, Roach AG, Scatton B (1979) Effects of clonidine, prazosin and phentolamine on heart rate and coronary sinus catecholamine concentration during cardioaccelerator nerve stimulation in spinal dogs. Br J Pharmacol 67:283–292

    PubMed  Google Scholar 

  • Cavero I, Gomeni R, Lefèvre-Borg F, Roach AG (1980) Comparison of mianserin with desipramine, maprotiline and phentolamine on cardiac presynaptic and vascular postsynaptic α-adrenoceptors and noradrenaline reuptake in pithed normotensive rats. Br J Pharmacol 68:321–332

    PubMed  Google Scholar 

  • Celuch SM, Dubocovich ML, Langer SZ (1978) Stimulation of presynaptic β-adrenoceptors enhances [3H]-noradrenaline release during nerve stimulation in the perfused cat spleen. Br J Pharmacol 63:97–109

    PubMed  Google Scholar 

  • Ceña V, García AG, Khoyi MA, Salaices M, Sanchez-García P (1985) Effect of the dihydropyridine Bay K 8644 on the release of [3H]-noradrenaline from the rat isolated vas deferens. Br J Pharmacol 85:691–696

    PubMed  Google Scholar 

  • Chan CC, Kalsner S (1979) An examination of the negative feedback function of presynaptic adrenoceptors in a vascular tissue. Br J Pharmacol 67:401–407

    PubMed  Google Scholar 

  • Cichini G, Lassmann H, Placheta P, Singer EA (1986) Effects of clonidine on the stimulation-evoked release of 3H-noradrenaline from superfused rat brain slices as a function of the biophase concentration. Naunyn-Schmiedeberg's Arch Pharmacol 333:36–42

    Article  Google Scholar 

  • Cohen RA, Shepherd JT, Vanhoutte PM (1983) Prejunctional and postjunctional actions of endogenous norepinephrine at the sympathetic neuroeffector junction in canine coronary arteries. Circul Res 52:16–25

    Google Scholar 

  • Cole AE, Shinnick-Gallagher P (1981) Comparison of the receptors mediating the catecholamine hyperpolarization and slow inhibitory postsynaptic potential in sympathetic ganglia. J Pharmacol Exp Ther 217:440–444

    PubMed  Google Scholar 

  • Constantine JW, Weeks RA, McShane WK (1978) Prazosin and presynaptic α-receptors in the cardioaccelerator nerve of the dog. Eur J Pharmacol 50:51–60

    Article  PubMed  Google Scholar 

  • Constantine JW, Gunnell D, Weeks RA (1980) α 1-and α 2-vascular adrenoceptors in the dog. Eur J Pharmacol 66:281–286

    Article  PubMed  Google Scholar 

  • Cousineau D, Goresky CA, Bach GG, Rose CP (1984) Effect of β-adrenergic blockade on in vivo norepinephrine release in canine heart. Am J Physiol 246:H283–H292

    PubMed  Google Scholar 

  • Cubeddu L, Weiner N (1975a) Nerve stimulation-mediated overflow of norepinephrine and dopamine-β-hydroxylase. III. Effects of norepinephrine depletion on the alpha presynaptic regulation of release. J Pharmacol Exp Ther 192:1–14

    PubMed  Google Scholar 

  • Cubeddu L, Weiner N (1975b) Release of norepinephrine and dopamine-β-hydroxylase by nerve stimulation. V. Enhanced release associated with a granular effect of a benzoquinolizine derivative with reserpine-like properties. J Pharmacol Exp Ther 193:757–774

    PubMed  Google Scholar 

  • Cubeddu L, Barnes E, Weiner N (1975) Release of norepinephrine and dopamine-β-hydroxylase by nerve stimulation. IV. An evaluation of a role for cyclic adenosine monophosphate. J Pharmacol Exp Ther 193:105–127

    PubMed  Google Scholar 

  • Cunnane TC, Stjärne L (1984a) Frequency dependent intermittency and ionic basis of impulse conduction in postganglionic sympathetic fibres of guinea-pig vas deferens. Neuroscience 11:211–229

    Article  PubMed  Google Scholar 

  • Cunnane TC, Stjärne L (1984b) Transmitter secretion from individual varicosities of guinea-pig and mouse vas deferens: highly intermittent and monoquantal. Neuroscience 13:1–20

    Article  PubMed  Google Scholar 

  • Dabiré H, Mouillé P, Andréjak M, Fournier B, Schmitt H (1981) Pre-and postsynaptic α-adrenoceptor blockade by (imidazolinyl-2)-2-benzodioxane 1–4 (170 150): antagonistic action on the central effects of clonidine. Arch int Pharmacodyn Ther 254:252–270

    PubMed  Google Scholar 

  • Dart AM, Dietz R, Hieronymus K, Kübler W, Mayer E, Schömig A, Strasser R (1984) Effects of α-and β-adrenoceptor blockade on the neurally evoked overflow of endogenous noradrenaline from the rat isolated heart. Br J Pharmacol 81:475–478

    PubMed  Google Scholar 

  • De Jonge A, Santing PN, Timmermans PBMWM, van Zwieten PA (1983) Effect of age on the prejunctional α-adrenoceptor-mediated feedback in the heart of spontaneously hypertensive rats and normotensive Wistar Kyoto rats. Naunyn-Schmiedeberg's Arch Pharmacol 323:33–36

    Article  Google Scholar 

  • De Jonge A, van den Berg G, Qian JQ, Wilffert B, Thoolen MJMC, Timmermans PBMWM, van Zwieten PA (1986) Inhibitory effect of alpha-1 adrenoceptor stimulation on cardiac sympathetic neurotransmission in pithed normotensive rats. J Pharmacol Exp Ther 236:500–504

    PubMed  Google Scholar 

  • De Langen CDJ, Mulder AH (1980) On the role of calcium ions in the presynaptic alpha-receptor mediated inhibition of [3H]noradrenaline release from rat brain cortex synaptosomes. Brain Res 185:399–408

    Article  PubMed  Google Scholar 

  • De Langen CDJ, Hogenboom F, Mulder AH (1979) Presynaptic noradrenergic α-receptors and modulation of 3H-noradrenaline release from rat brain synaptosomes. Eur J Pharmacol 60:79–89

    Article  PubMed  Google Scholar 

  • Demichel P, Gomond P, Roquebert J (1982) α-Adrenoceptor blocking properties of raubasine in pithed rats. Br J Pharmacol 77:449–454

    PubMed  Google Scholar 

  • Diamant S, Atlas D (1986) An endogenous brain substance, CDS (clonidine-displacing substance), inhibits the twitch response of rat vas deferens. Biochem Biophys Res Comm 134:184–190

    Article  PubMed  Google Scholar 

  • Dietl H, Sinha JN, Philippu A (1981) Presynaptic regulation of the release of catecholamines in the cat hypothalamus. Brain Res 208:213–218

    Article  PubMed  Google Scholar 

  • Digges KG, Summers RJ (1983) Effects of yohimbine stereoisomers on contractions of rat aortic strips produced by agonists with different selectivity for α 1-and α 2-adrenoceptors. Eur J Pharmacol 96:95–99

    Article  PubMed  Google Scholar 

  • Dismukes RK, Mulder AH (1976) Cyclic AMP and α-receptor-mediated modulation of noradrenaline release from rat brain slices. Eur J Pharmacol 39:383–388

    Article  PubMed  Google Scholar 

  • Dismukes K, De Boer AA, Mulder AH (1977) On the mechanism of alpha-receptor mediated modulation of 3H-noradrenaline release from slices of rat brain neocortex. Naunyn-Schmiedeberg's Arch Pharmacol 299:115–122

    Article  Google Scholar 

  • Dixon WR, Mosimann WF, Weiner N (1979) The role of presynaptic feedback mechanisms in regulation of norepinephrine release by nerve stimulation. J Pharmacol Exp Ther 209:196–204

    PubMed  Google Scholar 

  • Docherty JR (1984) An investigation of presynaptic α-adrenoceptor subtypes in the pithed rat heart and in the rat isolated vas deferens. Br J Pharmacol 82:15–23

    PubMed  Google Scholar 

  • Docherty JR (1986) Aging and the cardiovascular system. J Auton Pharmacol 6:77–84

    PubMed  Google Scholar 

  • Docherty JR, Hyland L (1985) No evidence for differences between pre-and post-junctional α 2-adrenoceptors. Br J Pharmacol 86:335–339

    PubMed  Google Scholar 

  • Docherty JR, McGrath JC (1979) An analysis of some factors influencing α-adrenoceptor feed-back at the sympathetic junction in the rat heart. Br J Pharmacol 66:55–63

    PubMed  Google Scholar 

  • Docherty JR, Starke K (1982) An examination of the pre-and postsynaptic α-adrenoceptors involved in neuroeffector transmission in rabbit aorta and portal vein. Br J Pharmacol 76:327–335

    PubMed  Google Scholar 

  • Doggrell SA, Vincent L (1980) Accumulation and overflow of 3H following incubation of the guinea-pig gall bladder with [3H]-noradrenaline. Br J Pharmacol 71:557–567

    PubMed  Google Scholar 

  • Dooley DJ, Bittiger H, Hauser KL, Bischoff SF, Waldmeier PC (1983) Alteration of central alpha2-and beta-adrenergic receptors in the rat after DSP-4, a selective noradrenergic neurotoxin. Neuroscience 9:889–898

    Article  PubMed  Google Scholar 

  • Doxey JC, Lane AC, Roach AG, Virdee NK (1984) Comparison of the α-adrenoceptor antagonist profiles of idazoxan (RX 781094), yohimbine, rauwolscine and corynanthine. Naunyn-Schmiedeberg's Arch Pharmacol 325:136–144

    Article  Google Scholar 

  • Drew GM (1977) Pharmacological characterisation of the presynaptic α-adrenoceptor in the rat vas deferens. Eur J Pharmacol 42:123–130

    Article  PubMed  Google Scholar 

  • Drew GM (1978a) The effect of different calcium concentrations on the inhibitory effect of presynaptic α-adrenoceptors in the rat vas deferens. Br J Pharmacol 63:417–419

    PubMed  Google Scholar 

  • Drew GM (1978b) Pharmacological characterization of the presynaptic α-adrenoceptors regulating cholinergic activity in the guinea-pig ileum. Br J Pharmacol 64:293–300

    PubMed  Google Scholar 

  • Drew GM (1980) Presynaptic modulation of heart rate responses to cardiac nerve stimulation in pithed rats. J Cardiovasc Pharmacol 2:843–856

    PubMed  Google Scholar 

  • Duckles SP (1982) Modulation of endogenous noradrenaline release by prejunctional α-adrenoreceptors: comparison of a cerebral and peripheral artery. J Auton Pharmacol 2:71–77

    PubMed  Google Scholar 

  • Dunlap K, Fischbach GD (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol (Lond) 317:519–535

    PubMed  Google Scholar 

  • Dzielak DJ, Thureson-Klein Å, Klein RL (1983) Local modulation of neurotransmitter release in bovine splenic vein. Blood Vess 20:122–134

    Google Scholar 

  • Ebstein RP, Seamon K, Creveling CR, Daly JW (1982) Release of norepinephrine from brain vesicular preparations: effects of an adenylate cyclase activator, forskolin, and a phosphodiesterase inhibitor. Cell Mol Neurobiol 2:179–192

    Article  PubMed  Google Scholar 

  • Eikenburg DC (1984) Functional characterization of the pre-and postjunctional α-adrenoceptors in the in situ perfused rat mesenteric vascular bed. Eur J Pharmacol 105:161–165

    Article  PubMed  Google Scholar 

  • Elliott HL, Jones CR, Vincent J, Lawrie CB, Reid JL (1984) The alpha adrenoceptor antagonist properties of idazoxan in normal subjects. Clin Pharmacol Ther 36:190–196

    PubMed  Google Scholar 

  • Elsner D, Saeed M, Sommer O, Holtz J, Bassenge E (1984) Sympathetic vasoconstriction sensitive to α 2-adrenergic receptor blockade. Hypertension 6:915–925

    PubMed  Google Scholar 

  • Enero MA (1984) Influence of neuronal uptake on the presynaptic α-adrenergic modulation of noradrenaline release. Naunyn-Schmiedeberg's Arch Pharmacol 328:38–40

    Article  Google Scholar 

  • Enero MA, Langer SZ (1973) Influence of reserpine-induced depletion of noradrenaline on the negative feed-back mechanism for transmitter release during nerve stimulation. Br J Pharmacol 49:214–225

    PubMed  Google Scholar 

  • Ennis C, Lattimer N (1984) Presynaptic agonist effect of phentolamine in the rabbit vas deferens and rat cerebral cortex. J Pharm Pharmacol 36:753–757

    PubMed  Google Scholar 

  • Ercan ZS (1983) Prejunctional alpha-adrenoceptor mediated prostaglandin releasing effect of clonidine in the isolated perfused rabbit kidney. Arch int Pharmacodyn Ther 265:138–149

    PubMed  Google Scholar 

  • Esler M, Jennings G, Korner P, Blombery P, Sacharias N, Leonard P (1984) Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol 247:E21–E28

    PubMed  Google Scholar 

  • Farah MB, Langer SZ (1974) Protection by phentolamine against the effects of phenoxybenzamine on transmitter release elicited by nerve stimulation in the perfused cat heart. Br J Pharmacol 52:549–557

    PubMed  Google Scholar 

  • Feuerstein TJ, Hertting G, Jackisch R (1985) Endogenous noradrenaline as modulator of hippocampal serotonin (5-HT)-release. Naunyn-Schmiedeberg's Arch Pharmacol 329:216–221

    Article  Google Scholar 

  • Filinger EJ, Langer SZ, Perec CJ, Stefano FJE (1978) Evidence for the presynaptic location of the alpha-adrenoceptors which regulate noradrenaline release in the rat submaxillary gland. Naunyn-Schmiedeberg's Arch Pharmacol 304:21–26

    Article  Google Scholar 

  • Fiszman ML, Stefano FJE (1984) Amphetamine-clonidine interaction on neurotransmission in the vas deferens of the rat. Naunyn-Schmiedeberg's Arch Pharmacol 328:148–153

    Article  Google Scholar 

  • FitzGerald GA, Watkins J, Dollery CT (1981) Regulation of norepinephrine release by peripheral α 2-receptor stimulation. Clin Pharmacol Ther 29:160–167

    PubMed  Google Scholar 

  • Forscher P, Oxford GS, Schulz D (1986) Noradrenaline modulates calcium channels in avian dorsal root ganglion cells through tight receptor-channel coupling. J Physiol (Lond) 379:131–144

    PubMed  Google Scholar 

  • Frankhuyzen AL, Mulder AH (1982) Pharmacological characterization of presynaptic α-adrenoceptors modulating [3H]noradrenaline and [3H] 5-hydroxytryptamine release from slices of the hippocampus of the rat. Eur J Pharmacol 81:97–106

    Article  PubMed  Google Scholar 

  • Fredholm BB, Lindgren E (1986) Possible involvement of the Ni-protein in the prejunctional inhibitory effect of a stable adenosine analogue (R-PIA) on noradrenaline release in the rat hippocampus. Acta Physiol Scand 126:307–309

    PubMed  Google Scholar 

  • French AM, Scott NC (1983) Feedback inhibition of responses of rat vas deferens to twin pulse stimulation. Eur J Pharmacol 86:379–383

    Article  PubMed  Google Scholar 

  • Fuder H, Muscholl E, Spemann R (1983) The determination of presynaptic pA2 values of yohimbine and phentolamine on the perfused rat heart under conditions of negligible autoinhibition. Br J Pharmacol 79:109–119

    PubMed  Google Scholar 

  • Fuder H, Bath F, Wiebelt H, Muscholl E (1984) Autoinhibition of noradrenaline release from the rat heart as a function of the biophase concentration. Effects of exogenous α-adrenoceptor agonists, cocaine, and perfusion rate. Naunyn-Schmiedeberg's Arch Pharmacol 325:25–33

    Article  Google Scholar 

  • Fuder H, Braun HJ, Schimkus R (1986) Presynaptic alpha-2 adrenoceptor activation and coupling of the receptor-presynaptic effector system in the perfused rat heart: affinity and efficacy of phenethylamines and imidazoline derivatives. J Pharmacol Exp Ther 237:237–245

    PubMed  Google Scholar 

  • Galloway MP, Westfall TC (1982) The release of endogenous norepinephrine from the coccygeal artery of spontaneously hypertensive and Wistar-Kyoto rats. Circul Res 51:225–232

    Google Scholar 

  • Galzin AM, Langer SZ (1985) Inhibition by 5,6-dihydroxy-2-dimethylaminotetralin (M7) of noradrenergic neurotransmission in the rabbit hypothalamus: role of alpha-2 adrenoceptors and of dopamine receptors. J Pharmacol Exp Ther 233:459–465

    PubMed  Google Scholar 

  • Galzin AM, Dubocovich ML, Langer SZ (1982) Presynaptic inhibition by dopamine receptor agonists of noradrenergic neurotransmission in the rabbit hypothalamus. J Pharmacol Exp Ther 221:461–471

    PubMed  Google Scholar 

  • Galzin AM, Moret C, Langer SZ (1984) Evidence that exogenous but not endogenous norepinephrine activates the presynaptic alpha-2 adrenoceptors on serotonergic nerve endings in the rat hypothalamus. J Pharmacol Exp Ther 228:725–732

    PubMed  Google Scholar 

  • Galzin AM, Moret C, Verzier B, Langer SZ (1985) Interaction between tricyclic and nontricyclic 5-hydroxytryptamine uptake inhibitors and the presynaptic 5-hydroxytryptamine inhibitory autoreceptors in the rat hypothalamus. J Pharmacol Exp Ther 235:200–211

    PubMed  Google Scholar 

  • Galzin AM, Langer SZ, Pasarelli F (1986) Interaction between 5-HT uptake inhibitors and presynaptic inhibitory 5-HT autoreceptors: comparison of K+ and electrical depolarization. Br J Pharmacol 87:23P

    Google Scholar 

  • Gillespie JS (1980) Presynaptic receptors in the autonomic nervous system. In: Szekeres L (ed) Adrenergic activators and inhibitors. Springer, Berlin Heidelberg New York, pp 353–425 (Handbook of experimental pharmacology, vol 54/I)

    Google Scholar 

  • Göthert M (1977) Effects of presynaptic modulators on Ca2+-induced noradrenaline release from cardiac sympathetic nerves. Naunyn-Schmiedeberg's Arch Pharmacol 300:267–272

    Google Scholar 

  • Göthert M (1984) Facilitatory effect of adrenocorticotropic hormone and related peptides on Ca2+-dependent noradrenaline release from sympathetic nerves. Neuroscience 11:1001–1009

    Article  PubMed  Google Scholar 

  • Göthert M, Hentrich F (1984) Role of cAMP for regulation of impulse-evoked noradrenaline release from the rabbit pulmonary artery and its possible relationship to presynaptic ACTH receptors. Naunyn-Schmiedeberg's Arch Pharmacol 328:127–134

    Article  Google Scholar 

  • Göthert M, Hentrich F (1986) Further evidence for the involvement of cyclic AMP in Ca2+-dependent, but not Ca2+-independent, noradrenaline release in the rabbit pulmonary artery. Arch int Pharmacodyn Ther 284:85–100

    PubMed  Google Scholar 

  • Göthert M, Kollecker P (1986) Subendothelial β 2-adrenoceptors in the rat vena cava: facilitation of noradrenaline release via local stimulation of angiotensin II synthesis. Naunyn-Schmiedeberg's Arch Pharmacol 334:156–165

    Article  Google Scholar 

  • Göthert M, Pohl IM, Wehking E (1979) Effects of presynaptic modulators on Ca2+-induced noradrenaline release from central noradrenergic neurons. Naunyn-Schmiedeberg's Arch Pharmacol 307:21–27

    Article  Google Scholar 

  • Göthert M, Schlicker E, Köstermann F (1983) Relationship between transmitter uptake inhibition and effects of α-adrenoceptor agonists on serotonin and noradrenaline release in the rat brain cortex. Naunyn-Schmiedeberg's Arch Pharmacol 322:121–128

    Article  Google Scholar 

  • Göthert M, Schlicker E, Hentrich F, Rohm N, Zerkowski HR (1984) Modulation of noradrenaline release in human saphenous vein via presynaptic α 2-adrenoceptors. Eur J Pharmacol 102:261–267

    Article  PubMed  Google Scholar 

  • Grabowska M, Andén NE (1976) Noradrenaline synthesis and utilization: control by nerve impulse flow under normal conditions and after treatment with alpha-adrenoreceptor blocking agents. Naunyn-Schmiedeberg's Arch Pharmacol 292:53–58

    Article  Google Scholar 

  • Graham RM, Stephenson WH, Pettinger WA (1980) Pharmacological evidence for a functional role of the prejunctional alpha-adrenoreceptor in noradrenergic neuro-transmission in the conscious rat. Naunyn-Schmiedeberg's Arch Pharmacol 311:129–138

    Article  Google Scholar 

  • Gripenberg J, Heinonen E, Jansson SE (1980) Uptake of radiocalcium by nerve endings isolated from rat brain: pharmacological studies. Br J Pharmacol 71:273–278

    PubMed  Google Scholar 

  • Groß G, Göthert M, Glapa U, Engel G, Schümann HJ (1985) Lesioning of serotoninergic and noradrenergic nerve fibres of the rat brain does not decrease binding of 3H-clonidine and 3H-rauwolscine to cortical membranes. Naunyn-Schmiedeberg's Arch Pharmacol 328:229–235

    Article  Google Scholar 

  • Grundström N, Andersson RGG, Wikberg JES (1981) Prejunctional alpha2 adrenoceptors inhibit contraction of tracheal smooth muscle by inhibiting cholinergic neurotransmission. Life Sci 28:2981–2986

    Article  PubMed  Google Scholar 

  • Guimarães S, Brandão F, Paiva MQ (1978) A study of the adrenoceptor-mediated feedback mechanisms by using adrenaline as a false transmitter. Naunyn-Schmiedeberg's Arch Pharmacol 305:185–188

    Article  Google Scholar 

  • Hagan RM, Hughes IE (1986) Yohimbine affects the evoked overflow of neurotransmitters from rat brain slices by more than one mechanism. J Pharm Pharmacol 38:195–200

    PubMed  Google Scholar 

  • Hamilton CA, Reid JL, Zamboulis C (1982) The role of presynaptic α-adrenoceptors in the regulation of blood pressure in the conscious rabbit. Br J Pharmacol 75:417–424

    PubMed  Google Scholar 

  • Hedler L, Starke K, Steppeler A (1983) Release of [3H]-amezinium from cortical noradrenergic axons: a model for the study of the α-autoreceptor hypothesis. Br J Pharmacol 78:645–653

    PubMed  Google Scholar 

  • Hedlund H, Andersson KE, Larsson B (1985) Effect of drugs interacting with adrenoreceptors and muscarinic receptors in the epididymal and prostatic parts of the human isolated vas deferens. J Auton Pharmacol 5:261–270

    PubMed  Google Scholar 

  • Hedqvist P (1981) Trans-synaptic modulation versus α-autoinhibition of noradrenaline secretion. In: Stjärne L, Hedqvist P, Lagercrantz H, Wennmalm Å (eds) Chemical neurotransmission 75 years. Academic Press, London, pp 223–233

    Google Scholar 

  • Heepe P, Starke K (1985) α-Adrenoceptor antagonists and the release of noradrenaline in rabbit cerebral cortex slices: support for the α-autoreceptor hypothesis. Br J Pharmacol 84:147–155

    PubMed  Google Scholar 

  • Henseling M (1983) The influence of uptake2 on the inhibition by unlabelled noradrenaline of the stimulation-evoked overflow of 3H-noradrenaline in rabbit aorta with regard to surface of amine entry. Naunyn-Schmiedeberg's Arch Pharmacol 324:99–107

    Article  Google Scholar 

  • Hentrich F, Göthert M, Greschuchna D (1985) Involvement of cAMP in modulation of noradrenaline release in the human pulmonary artery. Naunyn-Schmiedeberg's Arch Pharmacol 330:245–247

    Article  Google Scholar 

  • Hentrich F, Göthert M, Greschuchna D (1986) Noradrenaline release in the human pulmonary artery is modulated by presynaptic α 2-adrenoceptors. J Cardiovasc Pharmacol 8:539–544

    PubMed  Google Scholar 

  • Heyndrickx GR, Vilaine JP, Moerman EJ, Leusen I (1984) Role of prejunctional α 2-adrenergic receptors in the regulation of myocardial performance during exercise in conscious dogs. Circul Res 54:683–693

    Google Scholar 

  • Hicks PE, Langer SZ, Macrae AD (1985) Differential blocking actions of idazoxan against the inhibitory effects of 6-fluoronoradrenaline and clonidine in the rat vas deferens. Br J Pharmacol 86:141–150

    PubMed  Google Scholar 

  • Hicks PE, Najar M, Vidal M, Langer SZ (1986) Possible involvement of presynaptic α 1-adrenoceptors in the effects of idazoxan and prazosin on 3H-noradrenaline release from tail arteries of SHR. Naunyn-Schmiedeberg's Arch Pharmacol 333:354–361

    Article  Google Scholar 

  • Hieble JP, DeMarinis RM, Fowler PJ, Matthews WD (1986) Selective alpha-2 adrenoceptor blockade by SK&F 86466: in vitro characterization of receptor selectivity. J Pharmacol Exp Ther 236:90–96

    PubMed  Google Scholar 

  • Hölting T, Starke K (1986) Receptor protection experiments confirm the identity of presynaptic α 2-autoreceptors. Naunyn-Schmiedeberg's Arch Pharmacol 333:262–270

    Article  Google Scholar 

  • Holz GG, Rane SG, Dunlap K (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319:670–672

    Article  PubMed  Google Scholar 

  • Honda K, Miyata-Osawa A, Takenaka T (1985) α 1-Adrenoceptor subtype mediating contraction of the smooth muscle in the lower urinary tract and prostate of rabbits. Naunyn-Schmiedeberg's Arch Pharmacol 330:16–21

    Article  Google Scholar 

  • Horn JP, McAfee DA (1980) Alpha-adrenergic inhibition of calcium-dependent potentials in rat sympathetic neurones. J Physiol (Lond) 301:191–204

    PubMed  Google Scholar 

  • Hovevei-Sion D, Finberg JPM, Bomzon A, Youdim MBH (1983) Effects of forskolin in rat vas deferens — evidence for facilitatory β-adrenoceptors. Eur J Pharmacol 95:295–299

    Article  PubMed  Google Scholar 

  • Idowu OA, Zar MA (1977) The use of rat atria as a simple and sensitive in vitro preparation for detecting pre-synaptic actions of drugs on adrenergic transmission. Br J Pharmacol 61:157P

    Google Scholar 

  • Ilhan M, Long JP, Cannon JG (1976) The ability of pimozide to prevent inhibition by dopamine analogs of cardioaccelerator nerves in cat hearts. Arch int Pharmacodyn Ther 222:70–80

    PubMed  Google Scholar 

  • Illes P (1986) Mechanisms of receptor-mediated modulation of transmitter release in noradrenergic, cholinergic and sensory neurones. Neuroscience 17:909–928

    Article  PubMed  Google Scholar 

  • Illes P, Dörge L (1985) Mechanism of α 2-adrenergic inhibition of neuroeffector transmission in the mouse vas deferens. Naunyn-Schmiedeberg's Arch Pharmacol 328:241–247

    Article  Google Scholar 

  • Illes P, Starke K (1983) An electrophysiological study of presynaptic α-adrenoceptors in the vas deferens of the mouse. Br J Pharmacol 78:365–373

    PubMed  Google Scholar 

  • Jackisch R, Werle E, Hertting G (1984) Identification of mechanisms involved in the modulation of release of noradrenaline in the hippocampus of the rabbit in vitro. Neuropharmacology 23:1363–1371

    Article  PubMed  Google Scholar 

  • Jakobs KH, Bauer S, Minuth M, Watanabe Y (1985) Inhibitory coupling of α 2-adrenoceptors to adenylate cyclase. In: Lefkowitz RJ, Lindenlaub E (eds) Adrenergic receptors: molecular properties and therapeutic implications. Schattauer, Stuttgart, pp 261–271

    Google Scholar 

  • Janssens W, Verhaeghe R (1983) Modulation of the concentration of noradrenaline at the neuro-effector junction in human saphenous vein. Br J Pharmacol 79:577–585

    PubMed  Google Scholar 

  • Johnston H, Majewski H (1986) Prejunctional β-adrenoceptors in rabbit pulmonary artery and mouse atria: effect of α-adrenoceptor blockade and phosphodiesterase inhibition. Br J Pharmacol 87:553–562

    PubMed  Google Scholar 

  • Jonkman FAM, Man PW, Thoolen MJMC, van Zweiten PA (1985) Location of the mechanism of the clonidine withdrawal tachycardia in rats. J Pharm Pharmacol 37:580–582

    PubMed  Google Scholar 

  • Kahan T, Hjemdahl P, Dahlöf C (1984) Relationship between the overflow of endogenous and radiolabelled noradrenaline from canine blood perfused gracilis muscle. Acta Physiol Scand 122:571–582

    PubMed  Google Scholar 

  • Kalsner S (1979) Single pulse stimulation of guinea-pig vas deferens and the presynaptic receptor hypothesis. Br J Pharmacol 66:343–349

    PubMed  Google Scholar 

  • Kalsner S (1981) The role of calcium in the effects of noradrenaline and phenoxybenzamine on adrenergic transmitter release from atria: no support for negative feedback of release. Br J Pharmacol 73:363–371

    PubMed  Google Scholar 

  • Kalsner S (1982) Evidence against the unitary hypothesis of agonist and antagonist action at presynaptic adrenoceptors. Br J Pharmacol 77:375–380

    PubMed  Google Scholar 

  • Kalsner S (1983) The effects of yohimbine on presynaptic and postsynaptic events during sympathetic nerve activation in cattle iris: a critique of presynaptic receptor theory. Br J Pharmacol 78:247–253

    PubMed  Google Scholar 

  • Kalsner S (1985a) Clonidine and presynaptic adrenoceptor theory. Br J Pharmacol 85:143–147

    PubMed  Google Scholar 

  • Kalsner S (1985b) Is there feedback regulation of neurotransmitter release by autoreceptors? Biochem Pharmacol 34:4085–4097

    Article  PubMed  Google Scholar 

  • Kalsner S, Chan CC (1979) Adrenergic antagonists and the presynaptic receptor hypothesis in vascular tissue. J Pharmacol Exp Ther 211:257–264

    PubMed  Google Scholar 

  • Kalsner S, Quillan M (1984) A hypothesis to explain the presynaptic effects of adrenoceptor antagonists. Br J Pharmacol 82:515–522

    PubMed  Google Scholar 

  • Katada T, Gilman AG, Watanabe Y, Bauer S, Jakobs KH (1985) Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151:431–437

    Article  PubMed  Google Scholar 

  • Kato E, Koketsu K, Kuba K, Kumamoto E (1985) The mechanism of the inhibitory action of adrenaline on transmitter release in bullfrog sympathetic ganglia: independence of cyclic AMP and calcium ions. Br J Pharmacol 84:435–443

    PubMed  Google Scholar 

  • Keith RA, Howe BB, Salama AI (1986) Modulation of peripheral beta-1 and alpha-2 receptor sensitivities by the administration of the tricyclic antidepressant, imipramine, alone and in combination with alpha-2 antagonists to rats. J Pharmacol Exp Ther 236:356–363

    PubMed  Google Scholar 

  • Kenakin TP (1984) The relative contribution of affinity and efficacy to agonist activity: organ selectivity of noradrenaline and oxymetazoline with reference to the classification of drug receptors. Br J Pharmacol 81:131–141

    PubMed  Google Scholar 

  • Kirpekar SM, Furchgott RF, Wakade AR, Prat JC (1973) Inhibition by sympathomimetic amines of the release of norepinephrine evoked by nerve stimulation in the cat spleen. J Pharmacol Exp Ther 187:529–538

    PubMed  Google Scholar 

  • Kobinger W (1967) Über den Wirkungsmechanismus einer neuen antihypertensiven Substanz mit Imidazolinstruktur. Naunyn-Schmiedebergs Arch Pharmak exp Path 258:48–58

    Article  Google Scholar 

  • Kobinger W, Pichler L (1980) Investigation into different types of post-and presynaptic α-adrenoceptors at cardiovascular sites in rats. Eur J Pharmacol 65:393–402

    Article  PubMed  Google Scholar 

  • Kroneberg G, Oberdorf A, Hoffmeister F, Wirth W (1967) Zur Pharmakologie von 2-(2,6-Dimethylphenylamino)-4H-5,6-dihydro-1,3-thiazin (Bayer 1470), eines Hemmstoffes adrenergischer und cholinergischer Neurone. Naunyn-Schmiedebergs Arch Pharmak exp Path 256:257–280

    Article  Google Scholar 

  • Kubo T, Goshima Y, Ueda H, Misu Y (1986) Diminished α 2-adrenoceptor-mediated modulation of noradrenergic neurotransmission in the posterior hypothalamus of spontaneously hypertensive rats. Neurosci Lett 65:29–34

    Article  PubMed  Google Scholar 

  • Laduron PM (1985) Axonal transport of presynaptic receptors. In: Kalsner S (ed) Trends in autonomic pharmacology, vol 3. Taylor and Francis, London, pp 113–127

    Google Scholar 

  • Lai RT, Watanabe Y, Yoshida H (1983) Effect of islet-activating protein (IAP) on contractile responses of rat vas deferens: evidence for participation of Ni (inhibitory GTP binding regulating protein) in the α 2-adrenoceptor-mediated response. Eur J Pharmacol 90:453–456

    Article  PubMed  Google Scholar 

  • Langer SZ (1977) Presynaptic receptors and their role in the regulation of transmitter release. Br J Pharmacol 60:481–497

    PubMed  Google Scholar 

  • Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32:337–362

    Google Scholar 

  • Langer SZ, Dubocovich ML (1981) Cocaine and amphetamine antagonize the decrease of noradrenergic neurotransmission elicited by oxymetazoline but potentiate the inhibition by α-methylnorepinephrine in the perfused cat spleen. J Pharmacol Exp Ther 216:162–171

    PubMed  Google Scholar 

  • Langer SZ, Dubocovich ML, Celuch SM (1975) Prejunctional regulatory mechanisms for noradrenaline release elicited by nerve stimulation. In: Almgren O, Carlson A, Engel J (eds) Regulation of catecholamine turnover. Chemical tools in catecholamine research, vol II. Elsevier/North-Holland, Amsterdam, pp 183–191

    Google Scholar 

  • Langer SZ, Adler-Graschinsky E, Giorgi O (1977) Physiological significance of α-adrenoceptor-mediated negative feedback mechanism regulating noradrenaline release during nerve stimulation. Nature 265:648–650

    Article  PubMed  Google Scholar 

  • Langley AE, Weiner N (1978) Enhanced exocytotic release of norepinephrine consequent to nerve stimulation by low concentrations of cyclic nucleotides in the presence of phenoxybenzamine. J Pharmacol Exp Ther 205:426–437

    PubMed  Google Scholar 

  • Lattimer N, Rhodes KF (1985) A difference in the affinity of some selective α 2-adrenoceptor antagonists when compared on isolated vasa deferentia of rat and rabbit. Naunyn-Schmiedeberg's Arch Pharmacol 329:278–281

    Article  Google Scholar 

  • Lattimer N, McAdams RP, Rhodes KF, Sharma S, Turner SJ, Waterfall JF (1984) Alpha2-adrenoceptor antagonism and other pharmacological antagonist properties of some substituted benzoquinolizines and yohimbine in vitro. Naunyn-Schmiedeberg's Arch Pharmacol 327:312–318

    Article  Google Scholar 

  • Ledda F, Mantelli L (1984) Differences between the prejunctional effects of phenylephrine and clonidine in guinea-pig isolated atria. Br J Pharmacol 81:491–497

    PubMed  Google Scholar 

  • Leedham JA, Pennefather JN (1982) Dopamine acts at the same receptors as noradrenaline in the rat isolated vas deferens. Br J Pharmacol 77:293–299

    PubMed  Google Scholar 

  • Leighton J, Butz KR, Parmeter LL (1979) Effect of α-adrenergic agonists and antagonists on neurotransmission in the rat anococcygeus muscle. Eur J Pharmacol 58:27–38

    Article  PubMed  Google Scholar 

  • Levin BE (1984) Axonal transport and presynaptic location of α 2-adrenoreceptors in locus coeruleus neurons. Brain Res 321:180–182

    Article  PubMed  Google Scholar 

  • L'Heureux R, Dennis T, Curet O, Scatton B (1986) Measurement of endogenous noradrenaline release in the rat cerebral cortex in vivo by transcortical dialysis: effects of drugs affecting noradrenergic transmission. J Neurochem 46:1794–1801

    PubMed  Google Scholar 

  • Limberger N, Starke K (1983) Partial agonist effect of 2-[2-(1,4-benzodioxanyl)]-2-imidazoline (RX 781094) at presynaptic α 2-adrenoceptors in rabbit ear artery. Naunyn-Schmiedeberg's Arch Pharmacol 324:75–78

    Article  Google Scholar 

  • Limberger N, Starke K (1984) Further study of prerequisites for the enhancement by α-adrenoceptor antagonists of the release of noradrenaline. Naunyn-Schmiedeberg's Arch Pharmacol 325:240–246

    Article  Google Scholar 

  • Limberger N, Späth L, Hölting T, Starke K (1986) Mutual interaction between presynaptic α 2-adrenoceptors and opioid κ-receptors at the noradrenergic axons of rabbit brain cortex. Naunyn-Schmiedeberg's Arch Pharmacol 334:166–171

    Article  Google Scholar 

  • Loiacono RE, Rand MJ, Story DF (1985) Interaction between the inhibitory action of acetylcholine and the α-adrenoceptor autoinhibitory feedback system on release of [3H]-noradrenaline from rat atria and rabbit ear artery. Br J Pharmacol 84:697–705

    PubMed  Google Scholar 

  • Lokhandwala MF, Steenberg ML (1984) Selective activation by LY-141865 and apomorphine of presynaptic dopamine receptors in the rat kidney and influence of stimulation parameters in the action of dopamine. J Pharmacol Exp Ther 228:161–167

    PubMed  Google Scholar 

  • Lorenz RR, Vanhoutte PM, Shepherd JT (1979) Interaction between neuronal amine uptake and prejunctional alpha-adrenergic receptor activation in smooth muscle from canine blood vessels and spleen. Blood Vess 16:113–125

    Google Scholar 

  • Lundberg JM, Rudehill A, Sollevi A, Theodorsson-Norheim E, Hamberger B (1986) Frequency-and reserpine-dependent chemical coding of sympathetic transmission: differential release of noradrenaline and neuropeptide Y from pig spleen. Neurosci Lett 63:96–100

    Article  PubMed  Google Scholar 

  • Madjar H, Docherty JR, Starke K (1980) An examination of pre-and postsynaptic α-adrenoceptors in the autoperfused rabbit hindlimb. J Cardiovasc Pharmacol 2:619–627

    PubMed  Google Scholar 

  • Magnan J, Regoli D, Quirion R, Lemaire S, St-Pierre S, Rioux F (1979) Studies on the inhibitory action of somatostatin in the electrically stimulated rat vas deferens. Eur J Pharmacol 55:347–354

    Article  PubMed  Google Scholar 

  • Majewski H (1983) Modulation of noradrenaline release through activation of presynaptic β-adrenoreceptors. J Auton Pharmacol 3:47–60

    PubMed  Google Scholar 

  • Majewski H, Rand MJ, Tung LH (1981) Activation of prejunctional β-adrenoceptors in rat atria by adrenaline applied exogenously or released as a co-transmitter. Br J Pharmacol 73:669–679

    PubMed  Google Scholar 

  • Majewski H, Rump LC, Hedler L, Starke K (1983a) Effects of α 1-and α 2-adrenoceptor blocking drugs on noradrenaline release rate in anesthetized rabbits. J Cardiovasc Pharmacol 5:703–711

    PubMed  Google Scholar 

  • Majewski H, Hedler L, Starke K (1983b) Modulation of noradrenaline release in the conscious rabbit through α-adrenoceptors. Eur J Pharmacol 93:255–264

    Article  PubMed  Google Scholar 

  • Majewski H, Hedler L, Starke K (1983c) Evidence for a physiological role of presynaptic α-adrenoceptors: modulation of noradrenaline release in the pithed rabbit. Naunyn-Schmiedeberg's Arch Pharmacol 324:256–263

    Article  Google Scholar 

  • Majewski H, Hedler L, Schurr C, Starke K (1985) Dual effect of adrenaline on noradrenaline release in the pithed rabbit. J Cardiovasc Pharmacol 7:251–257

    PubMed  Google Scholar 

  • Malta E, Raper C, Tawa PE (1981) Pre-and postjunctional effects of clonidine-and oxymetazoline-like compounds in guinea-pig ileal preparations. Br J Pharmacol 73:355–362

    PubMed  Google Scholar 

  • Markstein R, Digges K, Marshall NR, Starke K (1984) Forskolin and the release of noradrenaline in cerebrocortical slices. Naunyn-Schmiedeberg's Arch Pharmacol 325:17–24

    Article  Google Scholar 

  • Marshall I (1983) Stimulation-evoked release of [3H]-noradrenaline by 1, 10 or 100 pulses and its modification through presynaptic α 2-adrenoceptors. Br J Pharmacol 78:221–231

    PubMed  Google Scholar 

  • Marwaha J, Aghajanian GK (1982) Relative potencies of alpha-1 and alpha-2 antagonists in the locus ceruleus, dorsal raphe and dorsal lateral geniculate nuclei: an electrophysiological study. J Pharmacol Exp Ther 222:287–293

    PubMed  Google Scholar 

  • McAfee DA, Henon BK, Horn JP, Yarowsky P (1981) Calcium currents modulated by adrenergic receptors in sympathetic neurons. Fed Proc 40:2246–2249

    PubMed  Google Scholar 

  • McCulloch MW, Rand MJ, Story DF (1972) Inhibition of 3H-noradrenaline release from sympathetic nerves of guinea-pig atria by a presynaptic α-adrenoceptor mechanism. Br J Pharmacol 46:523P–524P

    PubMed  Google Scholar 

  • McCulloch MW, Rand MJ, Story DF, Sutton I (1981) Prejunctional α-adrenoreceptors subserve a physiological role in cardiac noradrenergic transmission. J Auton Pharmacol 1:407–412

    PubMed  Google Scholar 

  • McCulloch MW, Papanicolaou M, Rand MJ (1985) Evidence for autoinhibition of stimulation-induced noradrenaline release from vasa deferentia of the guinea-pig and rat. Br J Pharmacol 86:455–464

    PubMed  Google Scholar 

  • Medgett IC, Rand MJ (1981) Dual effects of clonidine on rat prejunctional α-adrenoceptors. Clin Exp Pharmacol Physiol 8:503–507

    PubMed  Google Scholar 

  • Medgett IC, McCulloch MW, Rand MJ (1978) Partial agonist action of clonidine on prejunctional and postjunctional α-adrenoceptors. Naunyn-Schmiedeberg's Arch Pharmacol 304:215–221

    Article  Google Scholar 

  • Meeley MP, Ernsberger PR, Granata AR, Reis DJ (1986) An endogenous clonidine-displacing substance from bovine brain: receptor binding and hypotensive actions in the ventrolateral medulla. Life Sci 38:1119–1126

    Article  PubMed  Google Scholar 

  • Minson JB, de la Lande IS (1984) Factors influencing the release of noradrenaline from hypothalamic slices of the possum, Trichosurus vulpecula. Aust J Exp Biol Med Sci 62:341–354

    PubMed  Google Scholar 

  • Mishima S, Miyahara H, Suzuki H (1984) Transmitter release modulated by α-adrenoceptor antagonists in the rabbit mesenteric artery: a comparison between noradrenaline outflow and electrical activity. Br J Pharmacol 83:537–547

    PubMed  Google Scholar 

  • Mobley P, Greengard P (1985) Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex. Proc Natl Acad Sci USA 82:945–947

    PubMed  Google Scholar 

  • Montel H, Starke K, Weber F (1974) Influence of morphine and naloxone on the release of noradrenaline from rat brain cortex slices. Naunyn-Schmiedeberg's Arch Pharmacol 283:357–369

    Article  Google Scholar 

  • Moore PK, Griffiths RJ (1982) Pre-synaptic and post-synaptic effects of xylazine and naphazoline on the bisected rat vas deferens. Arch int Pharmacodyn Ther 260:70–77

    PubMed  Google Scholar 

  • Morita K, North RA (1981) Clonidine activates membrane potassium conductance in myenteric neurones. Br J Pharmacol 74:419–428

    PubMed  Google Scholar 

  • Morris MJ, Elghozi JL, Dausse JP, Meyer P (1981) α 1-and α 2-adrenoceptors in rat cerebral cortex: effect of frontal lobotomy. Naunyn-Schmiedeberg's Arch Pharmacol 316:42–44

    Article  Google Scholar 

  • Mottram DR (1983) Pre-junctional α 2-adrenoceptor activity of B-HT 920. J Pharm Pharmacol 35:652–655

    PubMed  Google Scholar 

  • Mulder AH, Schoffelmeer ANM (1985) Catecholamine and opioid receptors, presynaptic inhibition of CNS neurotransmitter release, and adenylate cyclase. In: Cooper DMF, Seamon KB (eds) Advances in cyclic nucleotide and protein phosphorylation research, vol 19. Raven, New York, pp 273–286

    Google Scholar 

  • Mulder AH, Frankhuyzen AL, Stoof JC, Wemer J, Schoffelmeer ANM (1984) Catecholamine receptors, opiate receptors, and presynaptic modulation of neurotransmitter release in the brain. In: Usdin E, Carlsson A, Dahlström A, Engel J (eds) Catecholamines. Part B: Neuropharmacology and central nervous system — theoretical aspects. Liss, New York, pp 47–58

    Google Scholar 

  • Muramatsu I, Fujiwara M, Ikushima S, Ashida K (1980) Effects of goniopora toxin on guinea-pig blood vessels. Naunyn-Schmiedeberg's Arch Pharmacol 312:193–197

    Article  Google Scholar 

  • Murphy MB, Brown MJ, Dollery CT (1984) Evidence for a peripheral component in the sympatholytic actions of clonidine and guanfacine in man. Eur J Clin Pharmacol 27:23–27

    Article  PubMed  Google Scholar 

  • Muscholl E (1973) Introduction. In: Proceedings of the 2nd meeting on adrenergic mechanisms. University of Porto, pp 33–39

    Google Scholar 

  • Nakamura S, Tepper JM, Young SJ, Groves PM (1981) Neurophysiological consequences of presynaptic receptor activation: changes in noradrenergic terminal excitability. Brain Res 226:155–170

    Article  PubMed  Google Scholar 

  • Nedergaard OA (1986) Presynaptic α-adrenoceptor control of transmitter release from vascular sympathetic neurones in vitro. In: Grobecker H, Philippu A, Starke K (eds) New aspects of the role of adrenoceptors in the cardiovascular system. Springer, Berlin Heidelberg New York, pp 24–32

    Google Scholar 

  • Nilsson H, Ljung B, Sjöblom N, Wallin BG (1985a) The influence of the sympathetic impulse pattern on contractile responses of rat mesenteric arteries and veins. Acta Physiol Scand 123:303–309

    PubMed  Google Scholar 

  • Nilsson H, Sjöblom N, Folkow B (1985b) Interaction between prejunctional α 2-receptors and neuronal transmitter reuptake in small mesenteric arteries from the rat. Acta Physiol Scand 125:245–252

    PubMed  Google Scholar 

  • Nörenberg W (1986) Electrophysiological evidence for an α 2-adrenergic inhibitory control of transmitter release in the rabbit mesenteric artery. Naunyn-Schmiedeberg's Arch Pharmacol 332:R79

    Google Scholar 

  • North RA (1986) Receptors on individual neurones. Neuroscience 17:899–907

    Article  PubMed  Google Scholar 

  • North RA, Surprenant A (1985) Inhibitory synaptic potentials resulting from α 2-adrenoceptor activation in guinea-pig submucous plexus neurones. J Physiol (Lond) 358:17–33

    PubMed  Google Scholar 

  • North RA, Williams JT (1984) On the inhibition by opiates of norepinephrine release. In: Usdin E, Carlsson A, Dahlström A, Engel J (eds) Catecholamines. Part B: Neuropharmacology and central nervous system — theoretical aspects. Liss, New York, pp 207–211

    Google Scholar 

  • Palaty V (1984) Release of 3,4-dihydroxyphenylglycol from the rat tail artery induced by veratridine. Can J Physiol Pharmacol 62:151–152

    PubMed  Google Scholar 

  • Pelayo F, Dubocovich ML, Langer SZ (1978) Possible role of cyclic nucleotides in regulation of noradrenaline release from rat pineal through presynaptic adrenoceptors. Nature 274:76–78

    Article  PubMed  Google Scholar 

  • Pelayo F, Dubocovich ML, Langer SZ (1980) Inhibition of neuronal uptake reduces the presynaptic effects of clonidine but not of α-methylnoradrenaline on the stimulation-evoked release of 3H-noradrenaline from rat occipital cortex slices. Eur J Pharmacol 64:143–155

    Article  PubMed  Google Scholar 

  • Pennefather JN (1983) A study of stimulation-evoked activation of α2-adrenoceptors in the rat isolated vas deferens. Clin Exp Pharmacol Physiol 10:381–393

    PubMed  Google Scholar 

  • Pernow J, Saria A, Lundberg JM (1986) Mechanisms underlying pre-and post-junctional effects of neuropeptide Y in sympathetic vascular control. Acta Physiol Scand 126:239–249

    PubMed  Google Scholar 

  • Pizarro M, Valdivieso MP, Orrego F (1986) Differential effects of veratridine and calcium on the release of [3H]noradrenaline and [14C] α-aminoisobutyrate from rat brain cortex slices. Neurochem Int 8:207–212

    Article  Google Scholar 

  • Polónia JJ, Paiva MQ, Guimaraes S (1985) Pharmacological characterization of postsynaptic α-adrenoceptor subtypes in five different dog arteries in-vitro. J Pharm Pharmacol 37:205–208

    PubMed  Google Scholar 

  • Powis DA, Baker PF (1986) α2-Adrenoceptors do not regulate catecholamine secretion by bovine adrenal medullary cells: a study with clonidine. Mol Pharmacol 29:134–141

    PubMed  Google Scholar 

  • Rafuse PE, Smith PA (1986) α2-Adrenergic hyperpolarization is not involved in slow synaptic inhibition in amphibian sympathetic ganglia. Br J Pharmacol 87:409–416

    PubMed  Google Scholar 

  • Raiteri M, Maura G, Versace P (1983) Functional evidence for two stereochemically different alpha-2 adrenoceptors regulating central norepinephrine and serotonin release. J Pharmacol Exp Ther 224:679–684

    PubMed  Google Scholar 

  • Raiteri M, Bonanno G, Marchi M, Maura G (1984) Is there a functional linkage between neurotransmitter uptake mechanisms and presynaptic receptors? J Pharmacol Exp Ther 231:671–677

    PubMed  Google Scholar 

  • Ramme D, Illes P, Späth L, Starke K (1986) Blockade of α2-adrenoceptors permits the operation of otherwise silent opioid κ-receptors at the sympathetic axons of rabbit jejunal arteries. Naunyn-Schmiedeberg's Arch Pharmacol 334:48–55

    Article  Google Scholar 

  • Rand MJ, McCulloch MW, Story DF (1980) Catecholamine receptors on nerve terminals. In: Szekeres L (ed) Adrenergic activators and inhibitors. Springer, Berlin Heidelberg New York, pp 223–266 (Handbook of experimental pharmacology, vol 54/I)

    Google Scholar 

  • Rane SG, Dunlap K (1986) Kinase C activator 1,2-oleoylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons. Proc Natl Acad Sci USA 83:184–188

    PubMed  Google Scholar 

  • Reichenbacher D, Reimann W, Starke K (1982) α-Adrenoceptor-mediated inhibition of noradrenaline release in rabbit brain cortex slices. Naunyn-Schmiedeberg's Arch Pharmacol 319:71–77

    Article  Google Scholar 

  • Remie R, Zaagsma J (1986) A new technique for the study of vascular presynaptic receptors in freely moving rats. Am J Physiol 251:H463–H467

    PubMed  Google Scholar 

  • Robie NW (1980) Evaluation of presynaptic α-receptor function in the canine renal vascular bed. Am J Physiol 239:H422–H426

    PubMed  Google Scholar 

  • Ruffolo RR (1984) Interactions of agonists with peripheral α-adrenergic receptors. Fed Proc 43:2910–2916

    PubMed  Google Scholar 

  • Rump LC, Majewski H (1987) Modulation of noradrenaline release through α1-and α2-adrenoceptors in rat isolated kidney. J Cardiovasc Pharmacol (in press)

    Google Scholar 

  • Ryan LJ, Tepper JM, Sawyer SF, Young SJ, Groves PM (1985) Autoreceptor activation in central monoamine neurons: modulation of neurotransmitter release is not mediated by intermittent axonal conduction. Neuroscience 15:925–931

    Article  PubMed  Google Scholar 

  • Saeed M, Holtz J, Elsner D, Bassenge E (1985) Sympathetic control of myocardial oxygen balance in dogs mediated by activation of coronary vascular α2-adrenoceptors. J Cardiovasc Pharmacol 17:167–173

    Google Scholar 

  • Saelens DA, Williams PB (1983) Evidence for prejunctional α-and β-adrenoceptors in the canine saphenous vein: influence of frequency of stimulation and external calcium concentration. J Cardiovasc Pharmacol 5:598–603

    PubMed  Google Scholar 

  • Sakakibara Y, Fujiwara M, Muramatsu I (1982) Pharmacological characterization of the alpha adrenoceptors of the dog basilar artery. Naunyn-Schmiedeberg's Arch Pharmacol 319:1–7

    Article  Google Scholar 

  • Savola JM, Virtanen R, Karjalainen A, Ruskoaho H, Puurunen J, Kärki NT (1986) Re-evaluation of drug-interaction with α-adrenoceptors in vivo and in vitro using imidazole derivatives. Life Sci 38:1409–1415

    Article  PubMed  Google Scholar 

  • Schlicker E, Göthert M, Köstermann F, Clausing R (1983) Effects of α-adrenoceptor antagonists on the release of serotonin and noradrenaline from rat brain cortex slices. Naunyn-Schmiedeberg's Arch Pharmacol 323:106–113

    Article  Google Scholar 

  • Schoffelmeer ANM, Mulder AH (1983a) Differential control of Ca2+-dependent [3H] noradrenaline release from rat brain slices through presynaptic opiate receptors and α-adrenoceptors. Eur J Pharmacol 87:449–458

    Article  PubMed  Google Scholar 

  • Schoffelmeer ANM, Mulder AH (1983b) [3H] Noradrenaline release from brain slices induced by an increase in the intracellular sodium concentration: role of intracellular calcium stores. J Neurochem 40:615–621

    PubMed  Google Scholar 

  • Schoffelmeer ANM, Mulder AH (1983c) 3H-Noradrenaline release from rat neocortical slices in the absence of extracellular Ca2+ and its presynaptic alpha2-adrenergic modulation. Naunyn-Schmiedeberg's Arch Pharmacol 323:188–192

    Article  Google Scholar 

  • Schoffelmeer ANM, Hogenboom F, Mulder AH (1985a) Evidence for a presynaptic adenylate cyclase system facilitating [3H]norepinephrine release from rat brain neocortex slices and synaptosomes. J Neurosci 5:2685–2689

    PubMed  Google Scholar 

  • Schoffelmeer ANM, Wardeh G, Mulder AH (1985b) Cyclic AMP facilitates the electrically evoked release of radiolabelled noradrenaline, dopamine and 5-hydroxytryptamine from rat brain slices. Naunyn-Schmiedeberg's Arch Pharmacol 330:74–76

    Article  Google Scholar 

  • Schoffelmeer ANM, Putters J, Mulder AH (1986a) Activation of presynaptic α2-adrenoceptors attenuates the inhibitory effect of μ-opioid receptor agonists on noradrenaline release from brain slices. Naunyn-Schmiedeberg's Arch Pharmacol 333:377–380

    Article  Google Scholar 

  • Schoffelmeer ANM, Wierenga EA, Mulder AH (1986b) Role of adenylate cyclase in presynaptic α2-adrenoceptor-and μ-opioid receptor-mediated inhibition of [3H]noradrenaline release from rat brain cortex slices. J Neurochem 46:1711–1717

    PubMed  Google Scholar 

  • Sharma TR, Wakade TD, Malhotra RK, Wakade AR (1986) Secretion of catecholamines from the perfused adrenal gland of the rat is not regulated by α-adrenoceptors. Eur J Pharmacol 122:167–172

    Article  PubMed  Google Scholar 

  • Shepperson NB, Duval N, Massingham R, Langer SZ (1981) Pre-and postsynaptic alpha adrenoceptor selectivity studies with yohimbine and its two diastereoisomers rauwolscine and corynanthine in the anesthetized dog. J Pharmacol Exp Ther 219:540–546

    PubMed  Google Scholar 

  • Skärby T (1984) Pharmacological properties of prejunctional α-adrenoceptors in isolated feline middle cerebral arteries; comparison with the postjunctional α-adrenoceptors. Acta Physiol Scand 122:165–174

    PubMed  Google Scholar 

  • Sneddon P, Westfall DP (1984) Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens. J Physiol (Lond) 347:561–580

    PubMed  Google Scholar 

  • Sneddon P, Meldrum LA, Burnstock G (1984) Control of transmitter release in guinea-pig vas deferens by prejunctional P1-purinoceptors. Eur J Pharmacol 105:293–299

    Article  PubMed  Google Scholar 

  • Starke K (1972a) Alpha sympathomimetic inhibition of adrenergic and cholinergic transmission in the rabbit heart. Naunyn-Schmiedeberg's Arch Pharmacol 274:18–45

    Article  Google Scholar 

  • Starke K (1972b) Influence of extracellular noradrenaline on the stimulation-evoked secretion of noradrenaline from sympathetic nerves: evidence for an α-receptor-mediated feed-back inhibition of noradrenaline release. Naunyn-Schmiedeberg's Arch Pharmacol 275:11–23

    Article  Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77:1–124

    PubMed  Google Scholar 

  • Starke K (1981a) α-Adrenoceptor subclassification. Rev Physiol Biochem Pharmacol 88:199–236

    PubMed  Google Scholar 

  • Starke K (1981b) Presynaptic receptors. Ann Rev Pharmacol Toxicol 21:7–30

    Article  Google Scholar 

  • Starke K, Altmann KP (1973) Inhibition of adrenergic neurotransmission by clonidine: an action on prejunctional α-receptors. Neuropharmacology 12:339–347

    Article  PubMed  Google Scholar 

  • Starke K, Langer SZ (1979) A note on terminology for presynaptic receptors. In: Langer SZ, Starke K, Dubocovich ML (eds) Presynaptic receptors. Pergamon, Oxford, pp 1–3

    Google Scholar 

  • Starke K, Montel H (1974) Influence of drugs with affinity for α-adrenoceptors on noradrenaline release by potassium, tyramine and dimethylphenylpiperazinium. Eur J Pharmacol 27:273–280

    Article  PubMed  Google Scholar 

  • Starke K, Wagner J, Schümann HJ (1972) Adrenergic neuron blockade by clonidine: comparison with guanethidine and local anesthetics. Arch int Pharmacodyn Ther 195:291–308

    PubMed  Google Scholar 

  • Starke K, Montel H, Gayk W, Merker R (1974) Comparison of the effects of clonidine on pre-and postsynaptic adrenoceptors in the rabbit pulmonary artery. Naunyn-Schmiedeberg's Arch Pharmacol 285:133–150

    Article  Google Scholar 

  • Starke K, Endo T, Taube HD (1975a) Relative pre-and postsynaptic potencies of α-adrenoceptor agonists in the rabbit pulmonary artery. Naunyn-Schmiedeberg's Arch Pharmacol 291:55–78

    Article  Google Scholar 

  • Starke K, Borowski E, Endo T (1975b) Preferential blockade of presynaptic α-adrenoceptors by yohimbine. Eur J Pharmacol 34:385–388

    Article  PubMed  Google Scholar 

  • Steenberg ML, Ekas RD, Lokhandwala MF (1983) Effect of epinephrine on norepinephrine release from rat kidney during sympathetic nerve stimulation. Eur J Pharmacol 93:137–148

    Article  PubMed  Google Scholar 

  • Sternweis PC, Robishaw JD (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem 259:13806–13813

    PubMed  Google Scholar 

  • Stevens MJ, Moulds RFW (1982) Are the pre-and postsynaptic α-adrenoceptors in human vascular smooth muscle atypical? J Cardiovasc Pharmacol 4:S129–S133

    PubMed  Google Scholar 

  • Stevens MJ, Moulds RFW (1985) Neuronally released norepinephrine does not preferentially activate postjunctional α1-adrenoceptors in human blood vessels in vitro. Circul Res 57:399–405

    Google Scholar 

  • Stjärne L (1973) Michaelis-Menten kinetics of secretion of sympathetic neurotransmitter as a function of external calcium: effect of graded alpha-adrenoceptor blockade. Naunyn-Schmiedeberg's Arch Pharmacol 278:323–327

    Article  Google Scholar 

  • Stjärne L (1978) Facilitation and receptor-mediated regulation of noradrenaline secretion by control of recruitment of varicosities as well as by control of electro-secretory coupling. Neuroscience 3:1147–1155

    Article  PubMed  Google Scholar 

  • Stjärne L, Åstrand P (1985) Relative pre-and postjunctional roles of noradrenaline and adenosine 5′-triphosphate as neurotransmitters of the sympathetic nerves of guinea-pig and mouse vas deferens. Neuroscience 14:929–946

    Article  PubMed  Google Scholar 

  • Stjärne L, Bartfai T, Alberts P (1979) The influence of 8-Br 3′,5′-cyclic nucleotide analogs and of inhibitors of 3′,5′-cyclic nucleotide phosphodiesterase, on noradrenaline secretion and neuromuscular transmission in guinea-pig vas deferens. Naunyn-Schmiedeberg's Arch Pharmacol 308:99–105

    Article  Google Scholar 

  • Stjärne L, Alberts P, Bartfai T (1986a) Effects of chloride ion substitution on the frequency dependence and α-autoinhibition of [3H]noradrenaline secretion in guinea-pig vas deferens. Acta Physiol Scand 127:327–333

    PubMed  Google Scholar 

  • Stjärne L, Lundberg JM, Åstrand P (1986b) Neuropeptide Y — a cotransmitter with noradrenaline and adenosine 5′-triphosphate in the sympathetic nerves of the mouse vas deferens? A biochemical, physiological and electropharmacological study. Neuroscience 18:151–166

    Article  PubMed  Google Scholar 

  • Story DD, Briley MS, Langer SZ (1979) The effects of chemical sympathectomy with 6-hydroxydopamine on α-adrenoceptor and muscarinic cholinoceptor binding in rat heart ventricle. Eur J Pharmacol 57:423–426

    Article  PubMed  Google Scholar 

  • Story DF, McCulloch MW, Rand MJ, Standford-Starr CA (1981) Conditions required for the inhibitory feedback loop in noradrenergic transmission. Nature 293:62–65

    Article  PubMed  Google Scholar 

  • Story DF, Standford-Starr CA, Rand MJ (1985) Evidence for the involvement of α1-adrenoceptors in negative feedback regulation of noradrenergic transmitter release in rat atria. Clin Sci 68:111s–115s

    PubMed  Google Scholar 

  • Stute N, Trendelenburg U (1984) The outward transport of axoplasmic noradrenaline induced by a rise of the sodium concentration in the adrenergic nerve endings of the rat vas deferens. Naunyn-Schmiedeberg's Arch Pharmacol 327:124–132

    Article  Google Scholar 

  • Su C, Kubo T (1984) Alpha-adrenoceptor-and prostaglandin-mediated modulation of vascular adrenergic neurotransmission in spontaneously hypertensive rats. Jap J Pharmacol 34:457–463

    PubMed  Google Scholar 

  • Sullivan AT, Drew GM (1980) Pharmacological characterisation of pre-and post-synaptic α-adrenoceptors in dog saphenous vein. Naunyn-Schmiedeberg's Arch Pharmacol 314:249–258

    Article  Google Scholar 

  • Suzuki H (1984) Adrenergic transmission in the dog mesenteric vein and its modulation by α-adrenoceptor antagonists. Br J Pharmacol 81:479–489

    PubMed  Google Scholar 

  • Tanaka T, Starke K (1979) Binding of 3H-clonidine to an α-adrenoceptor in membranes of guinea-pig ileum. Naunyn-Schmiedeberg's Arch Pharmacol 309:207–215

    Article  Google Scholar 

  • Tayo FM (1979) Prejunctional inhibitory α-adrenoceptors and dopaminoceptors of the rat vas deferens and the guinea-pig ileum in vitro. Eur J Pharmacol 58:189–195

    Article  PubMed  Google Scholar 

  • Tayo FM, Bevan RD, Bevan JA (1986) Changes in postjunctional α-adrenoceptors during postnatal growth in rabbit arteries. Circul Res 58:867–873

    Google Scholar 

  • Tepper JM, Groves PM, Young SJ (1985) The neuropharmacology of the autoinhibition of monoamine release. Trends Pharmacol Sci 6:251–256

    Article  Google Scholar 

  • Toda N, Okamura T, Nakajima M, Miyazaki M (1984) Modification by yohimbine and prazosin of the mechanical response of isolated dog mesenteric, renal and coronary arteries to transmural stimulation and norepinephrine. Eur J Pharmacol 98:69–78

    Article  PubMed  Google Scholar 

  • Török TL, Darvasi A, Salamon Z, Tóth P, Kovács A, Nguyen TT, Magyar K (1985) Presynaptic autoinhibition during rest and sodium-pump inhibition in isolated rat portal vein preparation. Neuroscience 16:439–449

    Article  PubMed  Google Scholar 

  • Tsukahara T, Taniguchi T, Usui H, Miwa S, Shimohama S, Fujiwara M, Handa H (1986) Sympathetic denervation and alpha adrenoceptors in dog cerebral arteries. Naunyn-Schmiedeberg's Arch Pharmacol 334:436–443

    Article  Google Scholar 

  • Uchida W, Kimura T, Satoh S (1984) Presence of presynaptic inhibitory α1-adrenoceptors in the cardiac sympathetic nerves of the dog: effects of prazosin and yohimbine on sympathetic neurotransmission to the heart. Eur J Pharmacol 103:51–56

    Article  PubMed  Google Scholar 

  • Ueda H, Goshima Y, Misu Y (1983) Presynaptic mediation by α2-, β 1-and β 2-adrenoceptors of endogenous noradrenaline and dopamine release from slices of rat hypothalamus. Life Sci 33:371–376

    PubMed  Google Scholar 

  • U'Prichard DC (1984) Biochemical characteristics and regulation of brain α2-adrenoceptors. Ann NY Acad Sci 430:55–75

    PubMed  Google Scholar 

  • Vizi ES (1979) Presynaptic modulation of neurochemical transmission. Progr Neurobiol 12:181–290

    Article  PubMed  Google Scholar 

  • Vizi ES, Somogyi GT, Hadházy P, Knoll J (1973) Effect of duration and frequency of stimulation on the presynaptic inhibition by α-adrenoceptor stimulation of the adrenergic transmission. Naunyn-Schmiedeberg's Arch Pharmacol 280:79–91

    Article  Google Scholar 

  • Vizi ES, Ludvig N, Rónai AZ, Folly G (1983) Dissociation of presynaptic α2-adrenoceptors following prazosin administration: presynaptic effect of prazosin. Eur J Pharmacol 95:287–290

    Article  PubMed  Google Scholar 

  • Vizi ES, Harsing LG, Zimanvi I, Gaal G (1985) Release and turnover of noradrenaline in isolated median eminence: lack of negative feedback modulation. Neurosience 16:907–916

    Google Scholar 

  • von Euler US (1979) General views on the relevance of presynaptic receptor systems. In: Langer SZ, Starke K, Dubocovich ML (eds) Presynaptic receptors. Pergamon, Oxford, pp 5–9

    Google Scholar 

  • von Kügelgen I, Starke K (1985) Noradrenaline and adenosine triphosphate as co-transmitters of neurogenic vasoconstriction in rabbit mesenteric artery. J Physiol (Lond) 367:435–455

    PubMed  Google Scholar 

  • Wakade AR, Wakade TD (1981) Release of noradrenaline by one pulse: modulation of such release by alpha-adrenoceptor antagonists and uptake blockers. Naunyn-Schmiedeberg's Arch Pharmacol 317:302–309

    Article  Google Scholar 

  • Wakade AR, Wakade TD (1983) Mechanism of negative feed-back inhibition of norepinephrine release by alpha-adrenergic agonists. Neuroscience 9:673–677

    Article  PubMed  Google Scholar 

  • Wakade AR, Wakade TD (1984) Effects of desipramine, trifluoperazine and other inhibitors of calmodulin on the secretion of catecholamines from the adrenal medulla and postganglionic sympathetic nerves of the salivary gland. Naunyn-Schmiedeberg's Arch Pharmacol 325:320–327

    Article  Google Scholar 

  • Wakade AR, Malhotra RK, Wakade TD (1985) Phorbol ester, an activator of protein kinase C, enhances calcium-dependent release of sympathetic neurotransmitter. Naunyn-Schmiedeberg's Arch Pharmacol 331:122–124

    Article  Google Scholar 

  • Warming SE, Shipley SD, Leedham JA, Hartley ML, Handberg GM, Pennefather JN (1982) The influence of neuronal uptake upon the relative potencies of agonists acting at prejunctional α2-adrenoceptors in the rat isolated vas deferens. Arch int Pharmadocyn Ther 259:14–30

    Google Scholar 

  • Warnock P, Hyland L, Docherty JR (1985) Further examination of the inhibitory actions of α1-adrenoceptor agonists in rat vas deferens. Eur J Pharmacol 113:239–245

    Article  PubMed  Google Scholar 

  • Wemer J, van der Lugt JC, de Langen CDJ, Mulder AH (1979) On the capacity of presynaptic alpha receptors to modulate norepinephrine release from slices of rat neocortex and the affinity of some agonists and antagonists for these receptors. J Pharmacol Exp Ther 211:445–451

    PubMed  Google Scholar 

  • Wemer J, Schoffelmeer ANM, Mulder AH (1981) Studies on the role of Na+, K+ and Cl ion permeabilities in K+-induced release of 3H-noradrenaline from rat brain slices and synaptosomes and in its presynaptic α-adrenergic modulation. Naunyn-Schmiedeberg's Arch Pharmacol 317:103–109

    Article  Google Scholar 

  • Wemer J, Schoffelmeer ANM, Mulder AH (1982) Effects of cyclic AMP analogues and phosphodiesterase inhibitors on K+-induced [3H]noradrenaline release from rat brain slices and on its presynaptic α-adrenergic modulation. J Neurochem 39:349–356

    PubMed  Google Scholar 

  • Westfall TC (1977) Local regulation of adrenergic neurotransmission. Physiol Rev 57:659–728

    PubMed  Google Scholar 

  • Westfall TC, Xue CY, Carpentier S, Meldrum MJ (1985) Modulation of noradrenaline release by presynaptic adrenoceptors in experimental hypertension. In: Szabadi E, Bradshaw CM, Nahorski SR (eds) Pharmacology of adrenoceptors. VCH, Weinheim, pp 177–186

    Google Scholar 

  • Wetzel GT, Goldstein D, Brown JH (1985) Acetylcholine release from rat atria can be regulated through an α1-adrenergic receptor. Circul Res 56:763–766

    Google Scholar 

  • Wikberg JES (1979) The pharmacological classification of adrenergic α1 and α2 receptors and their mechanisms of action. Acta Physiol Scand, Suppl 468

    Google Scholar 

  • Williams JT, North RA (1985) Catecholamine inhibition of calcium action potentials in rat locus coeruleus neurones. Neuroscience 14:103–109

    Article  PubMed  Google Scholar 

  • Williams JT, Henderson G, North RA (1985) Characterization of α2-adrenoceptors which increase potassium conductance in rat locus coeruleus neurones. Neuroscience 14:95–101

    Article  PubMed  Google Scholar 

  • Yamaguchi I, Kopin IJ (1980) Differential inhibition of alpha-1 and alpha-2 adrenoceptor-mediated pressor responses in pithed rats. J Pharmacol Exp Ther 214:275–281

    PubMed  Google Scholar 

  • Yamaguchi N (1982) Evidence supporting the existence of presynaptic α-adrenoceptors in the regulation of endogenous noradrenaline release upon hepatic sympathetic nerve stimulation in the dog liver in vivo. Naunyn-Schmiedeberg's Arch Pharmacol 321:177–184

    Article  Google Scholar 

  • Yamaguchi N, de Champlain J, Nadeau RA (1977) Regulation of norepinephrine release from cardiac sympathetic fibers in the dog by presynpatic α-and β-receptors. Circul Res 41:108–117

    Google Scholar 

  • Yorikane R, Kanda A, Kimura T, Satoh S (1986) Effects of epinephrine, isoproterenol and IPS-339 on sympathetic transmission to the dog heart: evidence against the facilitatory role of presynpatic beta adrenoceptors. J Pharmacol Exp Ther 238:334–340

    PubMed  Google Scholar 

  • Zimmerman BG, Liao JC, Gisslen J (1971) Effect of phenoxybenzamine and combined administration of iproniazid and tropolone on catecholamine release elicited by renal sympathetic nerve stimulation. J Pharmacol Exp Ther 176:603–610

    PubMed  Google Scholar 

  • Zukowska-Grojec Z, Bayorh MA, Kopin IJ (1983) Effect of desipramine on the effects of α-adrenoceptor inhibitors on pressor responses and release of norepinephrine into plasma of pithed rats. J Cardiovasc Pharmacol 5:297–301

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this chapter

Cite this chapter

Starke, K. (1987). Presynaptic α-autoreceptors. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 107. Reviews of Physiology, Biochemistry and Pharmacology, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027645

Download citation

  • DOI: https://doi.org/10.1007/BFb0027645

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17609-1

  • Online ISBN: 978-3-540-47715-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics