Skip to main content
Log in

The Molecular Mechanism of the Insulin-mimetic/sensitizing Activity of the Antidiabetic Sulfonylurea Drug Amaryl

  • Review Article
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

The hypoglycemic sulfonylurea drugs cause reduction of blood glucose predominantly via stimulation of insulin release from pancreatic β cells. In addition, during long-term treatment, an insulin-independent blood glucose-decreasing mechanism is assumed to operate. This may include insulin-sensitizing and insulin-mimetic activity in muscle and adipose tissue. This review summarizes our current knowledge about the putative modes of action of the sulfonylurea compound, Amaryl, in pancreatic β cells and, in particular, peripheral target cells that form the molecular basis for its characteristic pharmacological and clinical profile. The analysis was performed in comparison with the conventional and the “golden standard” sulfonylurea, glibenclamide. I conclude: (I) The blood glucose decrease provoked by Amaryl can be explained by a combination of stimulation of insulin release from the pancreas and direct enhancement, as well as potentiation of the insulin response of glucose utilization in peripheral tissues only. (II) The underlying molecular mechanisms seemed to rely on β cells on a sulfonylurea receptor protein, SURX, associated with the ATP-sensitive potassium channel (KATP) and different from SUR1 for glibenclamide, and in muscle and adipose cells on: (a) the increased production of diacylglycerol and activation of protein kinase C; (b) the enhanced expression of glucose transporter isoforms; and (c) the insulin receptor-independent activation of the insulin receptor substrate/phosphatidylinositol-3-kinase pathway. (III) The latter mechanism involved a nonreceptor tyrosine kinase and a number of components, such as caveolin and glycosylphosphatidylinositol structures, which are assembled in caveolae/detergent-insoluble glycolipid-enriched rafts of the target cell plasma membrane. Since hyperinsulinism and permanent KATP closure are supposed to negatively affect the pathogenesis and therapy of non-insulin-dependent diabetes mellitus, the demonstrated higher insulin-independent blood glucose-lowering activity of Amaryl may be therapeutically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References: (space limitation necessitated restriction of citations to reviews and studies directly related to Amaryl action which provide experimental details, more intense discussions of specific items and additional references)

  1. Lebovitz HE. (1990) Oral hypoglycemic agents. In: Rifkin H, Porte D. (eds.) Ellenberg and Rifkin’s Diabetes mellitus. Theory and Practise. Elsevier, New York, pp. 554–574.

    Google Scholar 

  2. Ashcroft SJH, Ashcroft FM. (1992) The sulfonylurea receptor. Biochim. Biophys. Acta 1175: 45–59.

    Article  PubMed  CAS  Google Scholar 

  3. Philipson LH. (1995) ATP-sensitive K+ channels: paradigm lost, paradigm regained. Science 270: 1159.

    Article  PubMed  CAS  Google Scholar 

  4. Aguilar-Bryan L, Bryan J. (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20: 101–135.

    PubMed  CAS  Google Scholar 

  5. Tabuchi H, Yamamoto H, Matsumoto K, et al. (2000) Regulation of insulin secretion by overexpression of Ca2+/calmodulin-dependent protein kinase II in insulinoma MIN6 cells. Endocrinology 141: 2350–2360.

    Article  PubMed  CAS  Google Scholar 

  6. Easom RA. (1999) CaM kinase II: a protein kinase with extraordinary talents germane to insulin exocytosis. Diabetes 48: 675–684.

    Article  PubMed  CAS  Google Scholar 

  7. Popoli M. (1993) Synaptotagmin is endogenously phosphorylated by Ca2+/calmodulin protein kinase II in synaptic vesicles. FEBS Lett. 317: 85–88.

    Article  PubMed  CAS  Google Scholar 

  8. Matsumoto K, Ebihara K, Yamamoto H, et al. (1999) Cloning from insulinoma cells of synapsin I associated with insulin secretory granules. J. Biol. Chem. 274: 2053–2059.

    Article  PubMed  CAS  Google Scholar 

  9. Mshlig M, Wolter S, Mayer P, et al. (1997) Insulinoma cells contain an isoform of Ca2+/calmodulin-dependent protein kinase IIδ associated with insulin secretion vesicles. Endocrinology 138: 2577–2584.

    Article  Google Scholar 

  10. Skeer JM, Degano P, Coles B, Potier M, Ashcroft FM, Ashcroft SJH. (1994) Determination of the molecular mass of the native beta-cell sulfonylurea receptor. FEBS Lett. 338: 98–102.

    Article  PubMed  CAS  Google Scholar 

  11. Bryan J, Aguilar-Bryan L. (1999) Sulfonylurea receptors: ABC transporters that regulate ATP-sensitive K+ channels. Biochim. Biophys. Acta 1461: 285–303.

    Article  PubMed  CAS  Google Scholar 

  12. Clement IV JP, Kunjilwar K, Gonzalez G, et al. (1997) Association and stoichiometry of KATP channel subunits. Neuron 18: 827–838.

    Article  PubMed  CAS  Google Scholar 

  13. Bryan LA, Nichols CG, Wechsler SW, et al. (1995) Cloning of the β cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268: 423–426.

    Article  PubMed  Google Scholar 

  14. Inagaki N, Gonoi T, Clement JP, et al. (1996) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270: 1167–1170.

    Google Scholar 

  15. Ueda K, Komine J, Matsuo M, Seino S, Amachi T. (1999) Cooperative binding of ATP and MgADP in the sulfonylurea receptor is modulated by glibenclamide. Proc. Natl. Acad. Sci. USA 96: 1268–1272.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Babenko AP, Aguilar-Bryan L, Bryan J. (1998) A view of SUR/KIR6.X, KATP channels. Annu. Rev. Physiol. 60: 667–687.

    Article  PubMed  CAS  Google Scholar 

  17. Ashfield R, Gribble FM, Ashcroft SJ, Ashcroft FM. (1999) Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel. Diabetes 48: 1341–1347.

    Article  PubMed  CAS  Google Scholar 

  18. Babenko AP, Gonzalez G, Bryan J. (1999) The tolbutamide site of SUR1 and a mechanism for its functional coupling to KATP channel closure. FEBS Lett. 459: 367–376.

    Article  PubMed  CAS  Google Scholar 

  19. Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. (1998) Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78: 227–245.

    Article  PubMed  CAS  Google Scholar 

  20. Uhde I, Toman A, Gross I, Schwanstecher C, Schwanstecher M. (1999) Identification of the potassium channel opener site on sulfonylurea receptors. J. Biol. Chem. 274: 28079–28082.

    Article  PubMed  CAS  Google Scholar 

  21. Thomas PM, Cote GJ, Wohlik N, et al. (1995) Mutations in the sulfonylurea receptor gene in familial hyperinsulinemic hypoglycemia of infancy. Science 268: 426–429.

    Article  PubMed  CAS  Google Scholar 

  22. Thomas P, Ye Y, Lightner E. (1996) Mutations of the pancreatic islet inward rectifier also lead to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum. Mol. Gen. 5: 1809–1812.

    Article  PubMed  CAS  Google Scholar 

  23. Kane C, Shepherd RM, Squires PE, et al. (1996) Loss of functional KATP channels in pancreatic β cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nature Med. 2: 1344–1347.

    Article  PubMed  CAS  Google Scholar 

  24. Gribble FM, Tucker SJ, Ashcroft FM. (1997) The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by MgADP and diazoxide. EMBO J. 16: 1145–1152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nichols CG, Shyng S-L, Nestorowicz A. (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272: 1785–1787.

    Article  PubMed  CAS  Google Scholar 

  26. Shyng S-L, Ferrigni T, Sheppard JB. (1998) Functional analysis of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes 47: 1145–1151.

    Article  PubMed  CAS  Google Scholar 

  27. Müller G, Hartz D, Pünter J, Ökonomopulos R, Kramer W. (1994) Differential interaction of glimepiride and glibenclamide with the β-cell sulfonylurea receptor: I. Binding characteristics. Biochim. Biophys. Acta 1191: 267–277.

    Article  PubMed  Google Scholar 

  28. Kramer W, Müller G, Girbig F, et al. (1995) The molecular interaction of sulfonylureas with β-cell ATP-sensitive K+-channels. Diabetes Res. Clin. Pract. 28(Suppl.): S67–S80.

    Article  PubMed  CAS  Google Scholar 

  29. Kramer W, Müller G, Girbig F, et al. (1994) Differential interaction of glimepiride and glibenclamide with the β-cell sulfonylurea receptor: II. Photoaffinity labeling of a 65-kDa protein with [3H]glimepiride. Biochim. Biophys. Acta 1191: 278–290.

    Article  PubMed  CAS  Google Scholar 

  30. Kramer W, Geisen K, Müller G. (1996) Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at pancreatic β-cells. Horm. Metab. Res. 28: 464–468.

    Article  PubMed  CAS  Google Scholar 

  31. Kramer W, Ökonomopulos R, Pünter J, Summ H-D. (1988) Direct photoaffinity labeling of the putative sulfonylurea receptor in rat β-cell tumor membranes by [3H]glibenclamide FEBS Lett. 229: 355–359.

    Article  PubMed  CAS  Google Scholar 

  32. Ashcroft FM. (1996) Mechanisms of the glycaemic effects of sulfonylureas. Horm. Metab. Res. 28: 456–463.

    Article  PubMed  CAS  Google Scholar 

  33. Ashcroft FM, Gribble FM. (1999) ATP-sensitive K+ channels and insulin secretion: their role in health and disease. Diabetologia 42: 903–919.

    Article  PubMed  CAS  Google Scholar 

  34. Draeger E. (1995) Clinical profile of glimepiride. Diabetes Res. Clin. Pract. 28: S139–S146.

    Article  PubMed  CAS  Google Scholar 

  35. Langtry HD, Balfour JA. (1998) Glimepiride—a review of its pharmacological and clinical efficacy in the management of type 2 diabetes mellitus. Drugs 55: 563–584.

    Article  PubMed  CAS  Google Scholar 

  36. Tsumura K. (1995) Clinical evaluation of glimepiride (HOE490) in NIDDM, including a double blind comparative study versus gliclazide. Diabetes Res. Clin. Pract. 28: S147–S149.

    Article  PubMed  CAS  Google Scholar 

  37. Dills DG, Schneider J, Glimepiride/Glyburide Research Group. (1996) Clinical evaluation of glimepiride versus glyburide in NIDDM in a double-blind comparative study. Horm. Metab. Res. 28: 426–429.

    Article  PubMed  CAS  Google Scholar 

  38. Draeger KE, Wernicke-Panten K, Lomp HJ. (1996) Long-term treatment of type 2 diabetic patients with a new oral anti-diabetic agent glimepiride (Amaryl): a double-blind comparison with glibenclamide. Horm. Metab. Res. 28: 419–425.

    Article  PubMed  CAS  Google Scholar 

  39. Müller G, Satoh Y, Geisen K. (1995) Extrapancreatic effects of sulfonylureas — a comparison between glimepiride and conventional sulfonylureas. Diabetes Res. Clin. Pract. 28(Suppl.): S115–S137.

    Article  PubMed  Google Scholar 

  40. Müller G, Geisen K. (1996) Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at adipocytes. Horm. Metab. Res. 28: 469–487.

    Article  PubMed  Google Scholar 

  41. Geisen K. (1988) Special pharmacology of the new sulfonylurea glimepiride. Drug. Res. 38: 1120–1130.

    CAS  Google Scholar 

  42. Müller G, Wied S, Wetekam E-M, Crecelius A, Unkelbach A, Pünter J. (1994) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas, glimepiride and glibenclamide, is correlated with modulations of the cAMP regulatory cascade. Biochem. Pharmacol. 48: 985–996.

    Article  PubMed  Google Scholar 

  43. Davidson MB, Molnar G, Furman A, Yamaguchi D. (1991) Glyburide-stimulated glucose transport in cultured muscle cells via protein kinase C-mediated pathway requiring new protein synthesis. Diabetes 40: 1531–1538.

    Article  PubMed  CAS  Google Scholar 

  44. Rogers BJ, Standaert ML, Pollet RJ. (1987) Direct effects of sulfonylurea agents on glucose transport BC3H-1 myocyte. Diabetes 36: 1292–1296.

    Article  PubMed  CAS  Google Scholar 

  45. Bak JF, Schmitz O, Sorensen NS, Pedersen O. (1989) Post-receptor effects of sulfonylurea on skeletal muscle glycogen synthase activity in type II diabetic patients. Diabetes 38: 1343–1350.

    Article  PubMed  CAS  Google Scholar 

  46. Jacobs DB, Jung CY. (1985) Sulfonylurea potentiates insulin-induced recruitment of glucose transport carrier in rat adipocytes. J. Biol. Chem. 260: 2593–2596.

    PubMed  CAS  Google Scholar 

  47. Altan N, ALtan VM, Mikolay L, Larner J, Schwartz CFW. (1985) Insulin-like and insulin-enhancing effects of the sulfonylurea glyburide on rat adipose glycogen synthase. Diabetes 34: 281–286.

    Article  PubMed  CAS  Google Scholar 

  48. Jacobs DB, Jung CY. (1985) Sulfonylurea potentiates insulin-induced recruitment of glucose transport carrier in rat adipocytes. J. Biol. Chem. 260: 2593–2596.

    PubMed  CAS  Google Scholar 

  49. Martz A, Jo I, Jung CY. (1988) Sulfonylurea binding to adipocyte membrane and potentiation of insulin stimulated hexose transport. J. Biol. Chem. 264: 13672–13678.

    Google Scholar 

  50. Maloff BL, Lockwood DH. (1981) In vitro effects of a sulfonylurea on insulin action in adipocytes. J. Clin. Invest. 68: 85–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Müller G, Wied S. (1993) The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes 42: 1852–1867.

    Article  PubMed  Google Scholar 

  52. Pessin JE, Thurmond DC, Elmendorf JS, Coker KJ, Okada S. (1999) Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. J. Biol. Chem. 274: 2593–2596.

    Article  PubMed  CAS  Google Scholar 

  53. Holman GD, Kasuga M. (1997) From receptor to transporter: insulin signalling to glucose transport. Diabetologia 40: 991–1003.

    Article  PubMed  CAS  Google Scholar 

  54. Czech MP, Corvera S. (1999) Signaling mechanisms that regulate glucose transport. J. Biol. Chem. 274: 1865–1868.

    Article  PubMed  CAS  Google Scholar 

  55. Bähr M, v. Holtey M, Müller G, Eckel J. (1995) Direct stimulation of myocardial glucose transport and glucose transporter (Glut1) and Glut4 protein expression by the sulfonylurea glimepiride. Endocrinology 136: 2547–2553.

    Article  PubMed  Google Scholar 

  56. Eckel J. (1996) Direct effects of glimepiride on protein expression of cardiac glucose transporters. Horm. Metab. Res. 28: 508–511

    Article  PubMed  CAS  Google Scholar 

  57. Gustafson TA, Moodie SA, Lavan BE. (1999) The insulin receptor and metabolic signaling. In: Blaustein, Greger, Grunicke, et al (eds.) Reviews in Physiology, Biochemistry and Pharmacology, vol. 137. Springer, Berlin, pp. 71–192.

    Google Scholar 

  58. White MF. (1997) The insulin signalling system and the IRS proteins. Diabetologia 40: S2–S17.

    Article  PubMed  CAS  Google Scholar 

  59. White MF. (1998) The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem. 182: 3–11.

    Article  PubMed  CAS  Google Scholar 

  60. Coffer PJ, Jin J, Woodgett JR. (1998) Protein kinase B (c-Akt): a multifunctional mediator of phosphatidyl 3-kinase activation. Biochem. J. 335: 1–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cohen P, Alessi DR, Cross DAE. (1997) PDK1, one of the missing links in insulin signal transduction? FEBS Lett. 410: 3–10.

    Article  PubMed  CAS  Google Scholar 

  62. White MF. (1998) The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem. 182: 3–11.

    Article  PubMed  CAS  Google Scholar 

  63. Shepherd PR, Withers DJ, Siddle K. (1998) Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333: 471–490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Nystrom FH, Quon MJ. (1999) Insulin signalling: Metabolic pathways and mechanisms for specificity. Cell. Signal. 11: 563–574.

    Article  PubMed  CAS  Google Scholar 

  65. Araki E, Lipes MA, Patti ME, et al. (1994) Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature 372: 186–190.

    Article  PubMed  CAS  Google Scholar 

  66. Tamemoto H, Kadowaki T, Tobe K, et al. (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372: 182–186.

    Article  PubMed  CAS  Google Scholar 

  67. Withers DJ, Gutierrez JS, Towery H, et al. (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391: 900–904.

    Article  PubMed  CAS  Google Scholar 

  68. Lavan BE, Fantin VR, Chang ET, Lane WS, Keller SR, Lienhard GE. (1997) A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J. Biol. Chem. 272: 21403–21407.

    Article  PubMed  CAS  Google Scholar 

  69. Liu SCH, Wang Q, Lienhard GE, Keller SR. (1999) Insulin receptor substrate 3 is not essential for growth or glucose homeostasis. J. Biol. Chem. 274: 18093–18099.

    Article  PubMed  CAS  Google Scholar 

  70. Takada Y, Takata Y, Iwanishi M, et al. (1996) Effect of glimepiride (HOE490) on insulin receptors of skeletal muscles from genetically diabetic KK-Ay mouse. Eur. J. Pharmacol. 308: 205–210.

    Article  PubMed  CAS  Google Scholar 

  71. Nosjean O, Briolay A, Roux B. (1997) Mammalian GPI proteins: sorting, membrane residence and functions. Biochim. Biophys. Acta 1331: 153–186.

    Article  PubMed  CAS  Google Scholar 

  72. Müller G, Wetekam E-A, Jung C, Bandlow W. (1994) Membrane association of lipoprotein lipase and a cAMP-binding ectoprotein in rat adipocytes. Biochemistry 33: 12149–12159.

    Article  PubMed  Google Scholar 

  73. Müller G, Dearey E-A, Pünter J. (1993) The sulfonylurea drug, glimepiride, stimulates release of glycosyl-phosphatidylinositolanchored plasma membrane proteins from 3T3 adipocytes. Biochem. J. 289: 509–521.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Saltiel AR, Fox JA, Sherline P, Cuatrecasas P. (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Science 233: 967–972.

    Article  PubMed  CAS  Google Scholar 

  75. Romero GL, Luttrell L, Rogol A, Zeller K, Hewlett E, Larner J. (1988) Phosphatidylinositol-glycan anchors of membrane proteins: potential precursors of insulin mediators. Science 240: 509–511.

    Article  PubMed  CAS  Google Scholar 

  76. Müller G, Dearey E-A, Korndörfer A, Bandlow W. (1994) Stimulation of a glycosyl-phosphatidylinositol-specific phospholipase by insulin and the sulfonylurea, glimepiride, in rat adipocytes depends on increased glucose transport. J. Cell Biol. 126: 1267–1276.

    Article  PubMed  Google Scholar 

  77. Movahedi S, Hooper N. (1997) Insulin stimulates the release of the glycosyl phosphatidylinositol-anchored membrane dipeptidase from 3T3-L1 adipocytes through the action of a phospholipase C. Biochem. J. 326: 531–537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Anderson RGW. (1998) The caveolae membrane system. Annu. Rev. Biochem. 67: 199–225.

    Article  PubMed  CAS  Google Scholar 

  79. Lisanti MP, Scherer PE, Tang ZL, Sargiacomo M. (1994) Caveolae, caveolin and caveolin-rich membrane domains: A signaling hypothesis. Trends Cell Biol. 4: 231–235.

    Article  PubMed  CAS  Google Scholar 

  80. Rothberg KG, Henser JE, Donzell WC, Ying Y-S, Glenney JR, Anderson RGW. (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68: 673–682.

    Article  PubMed  CAS  Google Scholar 

  81. Parton RG. (1996) Caveolae and caveolins. Curr. Opin. Cell Biol. 8: 542–548.

    Article  PubMed  CAS  Google Scholar 

  82. Kurzchalia TV, Dupree P, Monier S. (1994) VIP-21 Caveolin, a protein of the trans-Golgi network and caveolae. FEBS Lett. 346: 88–91.

    Article  PubMed  CAS  Google Scholar 

  83. Das K, Lewis RY, Scherer PE, Lisanti MP. (1999) The membrane-spanning domains of caveolins-1 and -2 mediate the formation of caveolin hetero-oligomers. J. Biol. Chem. 274: 18721–18728.

    Article  PubMed  CAS  Google Scholar 

  84. Sargiacomo M, Scherer PE, Tang Z, Kübler E, Song KS, Sanders MC. (1995) Oligomeric structure of caveolin: Implications for caveolae membrane organizations. Proc. Natl. Acad. Sci. USA 92: 9407–9411.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Brown DA, London E. (1997) Breakthroughs and views. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun. 240: 1–7.

    Article  PubMed  CAS  Google Scholar 

  86. Okamoto T, Schlegel A, Scherer PE, Lisanti MP. (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273: 5419–5422.

    Article  PubMed  CAS  Google Scholar 

  87. Schlegel A, Volonte D, Engelmann JA. (1999) Crowded little caves: structure and function of caveolae. Cell. Signal. 10: 457–463.

    Article  Google Scholar 

  88. Müller G, Frick W. (1999) Signalling via caveolin: Involvement in the cross-talk between phosphoinositolglycans and insulin. Cell. Mol. Life Sci. 56: 945–970.

    Article  PubMed  Google Scholar 

  89. Li S, Couet J, Lisanti MP. (1996) Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem. 272: 29182–29190.

    Article  Google Scholar 

  90. Couet J, Sargiacomo M, Lisanti MP. (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J. Biol. Chem. 272: 30429–30438.

    Article  PubMed  CAS  Google Scholar 

  91. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. J. Biol. Chem. 272: 6525–6533.

    Article  PubMed  CAS  Google Scholar 

  92. Pulido N, Casla A, Suarez A, Casanova B, Arrieta FJ, Rovira A. (1996) Sulphonylurea stimulates glucose uptake in rats through an ATP-sensitive K+ channel dependent mechanism. Diabetologia 39: 22–27.

    PubMed  CAS  Google Scholar 

  93. Shi H, Moustaid-Moussa N, Wilkison WO, Zemel MB. (1999) Role of the sulfonylurea receptor in regulating human adipocyte metabolism. FASEB J. 13: 1833–1838.

    Article  PubMed  CAS  Google Scholar 

  94. Rajan A, Luo Z-T, Kahn BB, Comstock JP, Cushman SW, Boyd III AE. (1994) Do adipocytes contain high affinity sulfonylurea receptors? Endocrinology 134: 1581–1588.

    Article  PubMed  CAS  Google Scholar 

  95. Draznin B, Sussman KE, Eckel RH, Kao M, Yost T, Sherman NA. (1988) Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperin-sulinemia. J. Clin. Invest. 82: 1848–1852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Draznin B, Kao M, Sussman KE. (1987) Insulin and glyburide increase cytosolic free-Ca2+ concentration in isolated rat adipocytes. Diabetes 36: 174–177.

    Article  PubMed  CAS  Google Scholar 

  97. Kim JH, Kiefer LL, Woychik RP, et al. (1997) Agouti regulation of intracellular clacium. Role of melanocortin receptor. Am. J. Physiol. 272: E379–E384.

    PubMed  CAS  Google Scholar 

  98. Zemel MB, Kim LL, Woychik RP, et al. (1995) Agouti regulation of intracellular calcium: role in the insulin resistance of viable yellow mice. Proc. Natl. Acad. Sci. U.S.A. 92: 4733–4737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Gribble FM, Tucker SJ, Seino S, Ashcroft FM. (1998) Tissue specificity of sulphonylureas: studies on cloned cardiac and β-cell KATP channels. Diabetes 47: 1412–1418.

    Article  PubMed  CAS  Google Scholar 

  100. Smits P, Thien T. (1995) Cardiovascular effects of sulphonylurea derivatives. Implications for the treatment of NIDDM. Diabetologia 38: 116–122.

    Article  PubMed  CAS  Google Scholar 

  101. Leibowitz G, Cerasi E. (1996) Sulphonylurea treatment of NIDDM patients with cardiovascular disease: a mixed blessing? Diabetologia 39: 503–515.

    Article  PubMed  CAS  Google Scholar 

  102. UKPDS. (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type II diabetes (UKPDS 33). Lancet 352: 837–853.

    Article  Google Scholar 

  103. Isomoto S, Kondo C, Yamada M. (1996) A novel sulphonylurea receptor forms with BIR (KIR6.2) a smooth muscle type of ATP-sensitive K+ channels. J. Biol. Chem. 271: 24321–24325.

    Article  PubMed  CAS  Google Scholar 

  104. Ämmälä C, Moorhouse A, Gribble FM. (1996) Promiscuous coupling between the sulphonylurea receptor and inwardly-rectifying potassium channels. Nature 379: 545–548.

    Article  PubMed  Google Scholar 

  105. Geisen K, Hitzel V, Ökonomopulos R, Pünter J, Weyer R, Summ H-D. (1985) Inhibition of [3H]glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Drug Res. 35: 707–712.

    CAS  Google Scholar 

  106. Dunn-Meynell A, Rawson N, Levin B. (1998) Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res. 814: 41–54.

    Article  PubMed  CAS  Google Scholar 

  107. Spanswick D, Smith M, Groppi V, Logam S, Ashford ML. (1997) Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390: 521–525.

    Article  PubMed  CAS  Google Scholar 

  108. Harvey J, McKenna F, Herson PS, Spanswick D, Ashford ML. (1997) Leptin activates ATP-sensitive potassium channels in the rat insulin-secreting cell line, CRI-G1. J. Physiol. 504: 527–535.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Considine RV, Caro JF. (1997) Leptin and the regulation of body weight. Int. J. Biochem. Cell Biol. 29: 1255–1272.

    Article  PubMed  CAS  Google Scholar 

  110. Tartaglia LA. (1997) The leptin receptor. J. Biol. Chem. 272: 6093–6096.

    Article  PubMed  CAS  Google Scholar 

  111. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. (2000) Central nervous system control of food intake. Nature 404: 661–671.

    Article  PubMed  CAS  Google Scholar 

  112. Harvey J, Ashford ML. (1998) Diazoxide- and leptin-activated K(ATP) currents exhibit differential sensitivity to englitazone and ciclazindol in the rat CRI-G1 insulin-secreting cell line. Brit. Pharmacol. 124: 1557–1565.

    Article  CAS  Google Scholar 

  113. Harvey J, Ashford ML. (1998) Role of tyrosine phosphorylation in leptin activation of ATP-sensitive K+ channels in the rat insulinoma cell line CRI-G1. J. Physiol. 510: 47–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Harvey J, Ashford ML. (1998) Insulin occludes leptin activation of ATP-sensitive K+ channels in rat CRI-G1 insulin secreting cells. J. Physiol. 511: 695–706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Mastick CC, Brady MJ, Saltiel AR. (1995) Insulin stimulates the tyrosine phosphorylation of caveolin. J. Cell Biol. 129: 1523–1531.

    Article  PubMed  CAS  Google Scholar 

  116. Saad MJA, Velloso LA, Carvalho CRO. (1995) Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart. Biochem. J. 310: 741–744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kowalski-Chauvel A, Pradayrol L, Vaysse N, Seva C. (1996) Gastrin stimulates tyrosine phosphorylation of insulin receptor substrate 1 and its association with Grb2 and the phosphatidylinositol 3-kinase. J. Biol. Chem. 271: 26356–26361.

    Article  PubMed  CAS  Google Scholar 

  118. Argetsinger LS, Hsu GW, Myers MG, Billestrup N, White MF, Carter-Su C. (1995) Growth hormone, interferon-γ, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J. Biol. Chem. 270: 14685–14692.

    Article  PubMed  CAS  Google Scholar 

  119. Verdier F, Chretien S, Billat C, Gisselbrecht S, Lacombe C, Mayeux P. (1997) Erythropoietin induces the tyrosine phosphorylation of insulin receptor substrate-2. J. Biol. Chem. 272: 26173–26178.

    Article  PubMed  CAS  Google Scholar 

  120. Lazar DF, Knez JJ, Medof ME, Cuatrecasas P, Saltiel AR. (1994) Stimulation of glycogen synthesis by insulin in human erythroleukemia cells requires the synthesis of glycosyl-phosphatidylinositol. Proc. Natl. Acad. Sci. USA 91: 9665–9669.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  121. Jones DR, Varela-Nieto I. (1998) The role of glycosyl-phosphatidylinositol in signal transduction. Int. J. Biochem. Cell Biol. 30: 313–326.

    Article  PubMed  CAS  Google Scholar 

  122. Jones DR, Varela-Nieto I. (1999) Diabetes and the role of inositol-containing lipids in insulin signaling. Mol. Med. 5: 505–514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Larner J, Huang LC. (1999) Identification of a novel inositol glycan signaling pathway with significant therapeutic relevance to insulin resistance: an insulin signaling model using both tyrosine kinase and G-proteins. Diabetes Rev. V7 N3: 217–231.

    Google Scholar 

  124. Frick W, Bauer A, Bauer J, Wied S, Müller G. (1998) Structure-activity relationship of synthetic phosphoinositolglycans mimicking metabolic insulin action. Biochemistry 38: 13421–13436.

    Article  Google Scholar 

  125. Frick W, Bauer A, Bauer J, Wied S, Müller G. (1998) Insulin-mimetic signalling of synthetic phosphoinositolglycans in isolated rat adipocytes. Biochem. J. 336: 163–181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Müller G, Wied S, Piossek C, Bauer A, Bauer J, Frick W. (1998) Convergence and divergence of the signaling pathways for insulin and phosphoinositolglycans. Mol. Med. 4: 299–323.

    Article  PubMed  Google Scholar 

  127. Müller G, Wied S, Frick W. (2000) Cross talk of pp125FAK and pp59Lyn non-receptor tyrosine kinases to insulin-mimetic signaling in adipocytes. Mol. Cell. Biol. 20: 4708–4723.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Badian M, Korn A, Lehr K-H. (1994) Absolute bioavailability of glimepiride (Amaryl registered) after oral administration. Drug Metab. Drug Interact. 11: 331–339.

    Article  CAS  Google Scholar 

  129. Rosenkranz B, Profozic V, Metelko Z. (1996) Pharmacokinetics and safety of glimepiride at clinically effective doses in diabetic patients with renal impairment. Diabetologia 39: 1617–1624.

    Article  PubMed  CAS  Google Scholar 

  130. Lehr KH, Damm P. (1990) Simultaneous determination of the sulfonylurea glimepiride and its metabolites in human serum and urine by high-performance liquid chromatography after pre-column derivatization. J. Chromatogr. 526: 497–505.

    Article  PubMed  CAS  Google Scholar 

  131. Wernicke-Panten K, Haupt E, Pfeiffer C. (1994) Early onset of pharmacodynamic effects of glimepiride in type II diabetic patients [abstract]. Diabetologia 37(Suppl. 1): 163.

    Google Scholar 

  132. Rosenstock J, Samols E, Muchmore DB. (1996) Glimepiride, a new once-daily sulfonylurea: a double-blind placebo-controlled study of NIDDM patients. Diabetes Care 19: 1194–1199.

    Article  PubMed  CAS  Google Scholar 

  133. Sonnenberg GE, Garg DC, Weidler DJ. (1997) Short-term comparison of once-versus twice-daily administration of glimepiride in patients with non-insulin-dependent diabetes mellitus. Ann. Pharmacother. 31: 671–676.

    Article  PubMed  CAS  Google Scholar 

  134. Geisen K, Vegh A, Krause E. (1996) Cardiovascular effects of conventional sulfonylureas and glimepiride. Horm. Metab. Res. 28: 496–507.

    Article  PubMed  CAS  Google Scholar 

  135. Ballagi-Pordany G, Nemeth M, Aranyi Z. (1992) Effect of glimepiride on the electrical activity of isolated rabbit heart muscle. Drug Res. 42: 111–113.

    CAS  Google Scholar 

  136. Müller G, Ertl J, Gerl M, Preibisch G. (1997) Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J. Biol. Chem. 272: 10585–10593.

    Article  PubMed  Google Scholar 

  137. Müller G, Wied S, Crecelius A, Kessler A, Eckel J. (1997) Phosphoinositolglycan-peptides from yeast potently induce metabolic insulin actions in isolated rat adipocytes, cardiomyocytes, and diaphragms. Endocrinology 138: 3459–3475.

    Article  PubMed  Google Scholar 

  138. Grynkiewicz G, Pocnic M, Tsien RY. (1985) A new generation of Ca2+ indicators with greatly improved fluorescent properties. J. Biol. Chem. 260: 3440–3450.

    PubMed  CAS  Google Scholar 

  139. Zerangue N, Schwappach B, Jan YN, Jan LY. (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22: 537–548.

    Article  PubMed  CAS  Google Scholar 

  140. Müller G, Wied S, Welte S. (2000) Involvement of caveolae in insulin-mimetic signaling by the sulfonylurea Amaryl. Chem. Phys. Lipids 7: 7–8 [abstract].

    Google Scholar 

Download references

Acknowledgements

The following coworkers contributed to the biochemical and pharmacological studies with Amaryl during the past decade: A. Crecelius, E.-A. Dearey, K. Geisen, F. Girbig, U. Gutjahr, H. Gögelein, D. Hartz, C. Jung, S. Kowalewski, A. Korndörfer, W. Kramer, K.-H. Lehr, R. Okonomopulos, J. Pünter, A. Unkelbach, E.-M. Wetekam and S. Wied, (all Aventis Pharma Germany); M. Bähr, M. v. Holtey, and J. Eckel (all Diabetes Institute Düsseldorf Germany); M. Kobayashi (University of Tokayama, Japan); Y. Satoh and S. Shakuto (Aventis Pharma Ltd. Japan)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, G. The Molecular Mechanism of the Insulin-mimetic/sensitizing Activity of the Antidiabetic Sulfonylurea Drug Amaryl. Mol Med 6, 907–933 (2000). https://doi.org/10.1007/BF03401827

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401827

Keywords

Navigation