Skip to main content
Log in

Diabetes and the Role of Inositol-Containing Lipids in Insulin Signaling

  • Review Article
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Among metabolic diseases, diabetes is considered one of the most prevalent throughout the world. Currently, statistics show that over 10% of the world’s aged population (60 years and older) suffers from diabetes. As a consequence, it consumes a considerable proportion of world health expenditure. This review considers both past and current research into the molecular basis of insulin resistance found in type II diabetes and focuses on the role of inositol-containing phospholipid metabolism. It has been firmly established that the activation of phosphatidylinositol 3-kinase (PI3-K) is important for the propagation of the metabolic actions of insulin. In addition to the 3-phosphorylated phosphatidylinositols formed via the action of PI3-K, the glycosyl-phosphatidylinositol/inositol phosphoglycan (GPI/IPG) signaling component is also strongly implicated in mediating numerous metabolic actions of insulin. Although all the elements within the type II diabetes phenotype have not been fully defined, it has been proposed that defects in insulin transmembrane signaling through malfunction of inositol-containing phospholipid metabolism and absenteeism of the generation of phospholipid-derived second messengers may be associated with the appearance of the type II diabetic phenotype. Pharmaceutical approaches using synthetically produced IPG analogues, which themselves mimic insulin’s actions, alone or in combination with other drugs, may lead the way toward introducing alternative therapies for type II diabetes in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jarret RJ, Keen H. (1976) Hyperglycemia and diabetes mellitus. Lancet 2: 1009–1012.

    Article  Google Scholar 

  2. Bennet PH, Rushforth NB, Miller M, LeCompte PM. (1976) Epidemiological studies of diabetes in the Pima Indians. Recent Prog. Horm. Res. 32: 333–376.

    Google Scholar 

  3. National Diabetes Data Group. (1979) Classification and diagnosis of diabetes mellitus and other catagories of glucose intolerance. Diabetes 28: 1039–1057.

    Article  Google Scholar 

  4. National Diabetes Advisory Board. (1984) Progress and promise in diabetes research. Department of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, MD.

    Google Scholar 

  5. Unger RH, Foster DW. (1985) Diabetes mellitus. In: Wilson JD, Foster DW (eds). Williams Textbook of Endocrinology. W.B. Saunders, Philadelphia, p. 1018–1080.

    Google Scholar 

  6. Eisenbarth GS, Connelly J, Soeldner JS. (1987) The “natural” history of type I diabetes. Diabetes Metab. Rev. 3: 873–891.

    Article  CAS  PubMed  Google Scholar 

  7. Lernmark A, Bärmeier H, Dube S, Hagopian W, Karlsen A, Wassmuth R. (1991) Autoimmunity of diabetes. Endocrinol. Metab. Clin. North Am. 20: 589–617.

    Article  CAS  PubMed  Google Scholar 

  8. Crisa L, Mordes JP, Rossini AA. (1992) Autoimmune diabetes mellitus in the BB rat. Diabetes Metab. Rev. 1: 4–37.

    Google Scholar 

  9. Bennett PH. (1983) Classification of diabetes. In: Ellenberg M, Rifkin H (eds). Diabetes Mellitus: Theory and Practice. Medical Examination Publishing, New Hyde Park, NY, p. 409–414.

    Google Scholar 

  10. Barnett AH, Eff C, Leslie RD, Pyke DA. (1981) Diabetes in identical twins. A study of 200 pairs. Diabetologia 20: 87–93.

    Article  CAS  PubMed  Google Scholar 

  11. Defronzo RA, Bonadonna RC, Ferrannini E. (1992) Pathogenesis of NIDDM: A balanced overview. Diabetes Care 15: 318–368.

    Article  CAS  PubMed  Google Scholar 

  12. Lavan BE, Lane WS, Lienhard GE. (1997) The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J. Biol. Chem. 272: 11439–11443.

    Article  CAS  PubMed  Google Scholar 

  13. Sciacchitano S, Taylor SI. (1997) Cloning, tissue expression and chromosomal localization of the mouse IRS-3 gene. Endocrinology 138: 4931–4940.

    Article  CAS  PubMed  Google Scholar 

  14. White MF, Yenush L. (1998) The IRS-signalling system: A network of docking proteins that mediate insulin and cytokine action. Curr. Top. Microbiol. Immunol. 228: 179–208.

    PubMed  CAS  Google Scholar 

  15. Saltiel A, Cuatrecasas P. (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc. Natl. Acad. Sci. U.S.A. 83: 5793–5797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stralfors P. (1997) Insulin second messengers. Bio Essays 19: 327–335.

    CAS  Google Scholar 

  17. Jones DR, Varela-Nieto I. (1998) The role of glycosyl-phosphatidylinositol in signal transduction. Int. J. Biochem. Cell. Biol 30: 313–326.

    Article  CAS  PubMed  Google Scholar 

  18. Larner J, Allan G, Kessler C, Reamer P, Gunn R, Huang LC. (1999) Phosphoinositol glycan-derived mediators and insulin resistance. Prospects for diagnosis and therapy. J. Basic Clin. Physiol. Pharmacol. 9: 127–137.

    Google Scholar 

  19. Macaulay SL, Larkins RG. (1990) Isolation of insulin-sensitive phosphatidylinositol-glycan from rat adipocytes. Biochem. J. 271: 427–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sánchez-Arias JA, Sánchez-Gutierrez JC, Guadaño A, et al. (1992) Impairment of glycosyl-phosphatidylinositol-dependent insulin signaling system in isolated rat hepatocytes by streptzotocin-induced diabetes. Endocrinology 131: 1727–1733.

    Article  PubMed  Google Scholar 

  21. Farese RV, Standaert ML, Yamada K, et al. (1994) Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats. Proc. Natl. Acad. Sci. U.S.A. 91: 11040–11044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Varela-Nieto I, Leon Y, Caro HN. (1996) Cell signalling by inositol phosphoglycan from different species. Comp. Biochem. Physiol. 115B: 223–241.

    Article  CAS  Google Scholar 

  23. Fonteies MC, Huang LC, Larner J. (1996) Infusion of pH 2.0 d-chiro-inositol glycan putative mediator normalises plasma glucoase in streptozotocin diabetic rats at a doase equivalent to insulin without inducing hypoglycaemia. Diabetologia 39: 731–734.

    Article  Google Scholar 

  24. Jones DR, Avila MA, Sanz C, Varela-Nieto I. (1997) Glycosyl-phosphatidylinositol-phospholipase type D: A possible candidate for the generation of second messengers. Biochem. Biophys. Res. Commun. 233: 432–437.

    Article  CAS  PubMed  Google Scholar 

  25. Villar AV, Goni FM, Alonso A, Jones DR, León Y, Varela-Nieto I. (1998) Phospholipase cleavage of glycosylphosphatidylinositol reconstituted in liposomal membranes. FEBS Lett. 432: 150–154.

    Article  CAS  PubMed  Google Scholar 

  26. Bruzik KS, Hakeem A, Tsai M-D. (1994) Are d-and l-chiro-phosphoinositides substrates of phosphatidylinositol-specific phospholipase C? Biochemistry 33: 8367–8374.

    Article  CAS  PubMed  Google Scholar 

  27. Larner J, Huang LC, Schwartz CFW, et al. (1988) Rat liver insulin mediator which stimulates pyruvate dehydrogenase phosphatase contains galactosamine and d-chiroinositol. Biochem. Biophys. Res. Commun. 151: 1416–1426.

    Article  CAS  PubMed  Google Scholar 

  28. Plourde R, d’Alarcao M, Saltiel AR. (1992) Synthesis and characterization of an insulin-mimetic phosphodisaccharide. J. Org. Chem. 57: 2606–2610.

    Article  CAS  Google Scholar 

  29. Zapata A, Leon Y, Mato JM, Varela-Nieto I, Penades S, Martin-Lomas M. (1994) Synthesis and investigation of the possible insulin-like activity of 1-d-4-O- and l-d-6-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-myo-inositol 1-phosphate and l-d-6-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-myo-inositol 1, 2-(cyclic phosphate). Carbohydr. Res. 264: 21–31.

    Article  CAS  PubMed  Google Scholar 

  30. León Y, Sanz C, Giráldez F, Varela-Nieto I. (1998) Induction of cell growth by insulin and insulinlike growth factor-I is associated with jun expression in the otic vesicle. J. Comp. Neurol 398: 323–332.

    Article  PubMed  Google Scholar 

  31. Dietrich H, Espinosa JF, Chiara JL, et al. (1999) Glycosyl inositol derivatives related to inositol-phosphoglycan mediators: Synthesis, structure and biological activity. Chem. Eur. J. 5: 320–336.

    Article  CAS  Google Scholar 

  32. Clémente R, Jones DR, Ochoa P, Romero G, Mato JM, Varela-Nieto I. (1995) Role of glycosyl-phosphatidylinositol hydrolysis as a mitogenic signal for epidermal growth factor. Cell Signal 7: 411–421.

    Article  PubMed  Google Scholar 

  33. Sekar MC. (1998) New developments in phosphoinositide signalling. Asian Pac. J. Pharmacol. 13: 51–63.

    CAS  Google Scholar 

  34. Reddy KK, Falck JR, Capdevila J. (1993) Insulin second messengers: Synthesis of 6-0-(2-amino-2-deoxy-α-d-glucopyranosyl)-d-chiro-inositol-1-phosphate. Tetrahedron Lett. 34: 7869–7872.

    Article  CAS  Google Scholar 

  35. Leon Y, Sanz C, Frago LM, et al. (1999) Involvement of insulin-like growth factor-I in inner ear organogenesis and regeneration. Horm. Metab. Res. 31: 1–7.

    Article  Google Scholar 

  36. Nestler JE, Jakuowicz DJ, Falcon de Vargas A, Brik C, Quintero N, Medina F. (1998) Insulin stimulates testosterone biosynthesis in human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J. Clin. Endocrinol. Metab. 83: 2001–2005.

    PubMed  CAS  Google Scholar 

  37. Nestler JE. (1998) Inositolphosphoglycans (IPGs) as mediators of insulin’s steroidogenic actions. J. Basic Clin. Physiol. Pharmacol. 9: 197–204.

    Article  CAS  PubMed  Google Scholar 

  38. Frick W, Bauer A, Bauer J, Wied S, Müller G. (1998) Insulin-mimetic signalling of synthetic phosphinositolglycans in isolated rat adipocytes. Biochem. J. 336: 163–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frick W, Bauer A, Bauer J, Wied S, Müller G. (1998) Structure-activity relationships of synthetic phosphoinositol glycans mimicking metabolic insulin action. Biochemistry 37: 13421–13436.

    Article  CAS  PubMed  Google Scholar 

  40. Kennington AS, Hill CR, Craig J, et al. (1990) Low urinary chiro-inositol excretion in non-insulin-dependent diabetes mellitus. N. Engl J. Med. 323: 373–378.

    Article  CAS  PubMed  Google Scholar 

  41. Asplin I, Galasko G, Larner J. (1993) Chiro-inositol deficiency and insulin resistance: A comparison of the chiro-inositol- and the myo-inositol-containing insulin mediators isolated from urine, hemodialysate, and muscle of control and type II diabetic subjects. Proc. Natl. Acad. Sci. U.S.A. 90: 5924–5928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Larner J, Craig JW. (1996) Urinary myo-inositol-to-chiro-inositol ratios and insulin resistance. Diabetes Care 19: 76–78.

    Article  CAS  PubMed  Google Scholar 

  43. Shashkin PN, Shaskina EF, Fernqvist-Forbes E, Zhou Y-P, Gull V, Katz A. (1997) Insulin mediators in man: Effects of glucose ingestion and insulin resistance. Diabetologia 40: 557–563.

    Article  CAS  PubMed  Google Scholar 

  44. Pak Y, Hong Y, Kim S, Piccariello T, Farese RV, Larner J. (1998) In vivo chiro-inositol metabolism in the rat: A defect in chiro-inositol synthesis from myo-inositol and an increased incorporation of chiro-[3H]inositol into phospholipid in the Goto-Kakizaki (G.K) rat. Mol. Cells 8: 301–309.

    PubMed  CAS  Google Scholar 

  45. Varela-Nieto I, Alvarez L, Mato JM. (1993) Intracellular mediators of peptide hormone action: Glycosyl phosphatidylinositol/inositol phosphoglycan system. In: De Pablo F, Scanes CG (eds). Handbook of Endocrine Research Techniques. Academic Press, San Diego, p. 391.

    Google Scholar 

  46. Huang LC, Fonteies MC, Houston DB, Zhang C, Larner J. (1993) Chiroinositol deficiency and insulin resitance. III. Acute glycogenic and hypoglycemic effects of two inositol phosphoglycan insulin mediators in normal and strepozotocin-diabetic rats in vivo. Endocrinogy 132: 652–657.

    Article  CAS  Google Scholar 

  47. Galasko GTF, Bao Y, Broomfield SJ, Hooper NM, Turner AJ, Larner J. (1995) Circulating factors and insulin resistance. I. A novel myoinositol 1,2-cyclic phosphate phosphoglycan insulin anatgonist from human plasma is elevated in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 80: 2419–2429.

    PubMed  CAS  Google Scholar 

  48. Galasko GTF, Abe S, Lilley K, Zhang C, Larner J. (1996) Circulating factors and insulin resistance. H. The action of the novel myoinositol cyclic 1,2-inositol phosphate phosphoglycan insulin antagonist from human plasma in regulating pyruvate dehydrogenase phosphatase. J. Clin. Endocrinol. Metab. 81: 1051–1057.

    PubMed  CAS  Google Scholar 

  49. Villalba M, Alvarez JF, Russell DS, Mato JM, Rosen OM. (1990) Hydrolysis of glycosyl-phosphatidylinositol in response to insulin is reduced in cells bearing kinase-deficient insulin receptors. Growth Factors 2: 91–97.

    Article  CAS  PubMed  Google Scholar 

  50. Suzuki S, Taneda Y, Hirai S, Yamamoto-Honda R, Toyota T. (1992) Mutated insulin receptor val 996 reduces insulin-dependent generation of inositol glycan and diacylglycerol. Diabetes 41: 1373–1379.

    Article  CAS  PubMed  Google Scholar 

  51. Kerouz NJ, Horsch D, Pons S, Kahn CR. (1997) Differential regulation of insulin receptor substrates-1 and −2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J. Clin. Invest. 100: 3164–3172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paz K, Hemi R, LeRoith D, et al. (1997) A molecular basis for insulin resistance. J. Biol. Chem. 272: 29911–29918.

    Article  CAS  PubMed  Google Scholar 

  53. Withers DJ, Ssnchez-Gutierrez J, Towery H, et al. (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391: 900–904.

    Article  CAS  PubMed  Google Scholar 

  54. Shepherd PR, Withers DJ, Siddle K. (1998) Phosphoinositide 3-kinase: The key switch in insulin signalling. Biochem. J. 333: 471–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alessi DR, Downes CP. (1998) The role of PI 3-kinase in insulin action. Biochem. Biophys. Acta 1436: 151–164.

    PubMed  CAS  Google Scholar 

  56. Anai M, Ono H, Funaki M, et al. (1998) Different subcellular distribution and regulation of expression of insulin receptor substrate (IRS)-3 from those of IRS-1 and IRS-2. J. Biol. Chem. 273: 29686–29692.

    Article  CAS  PubMed  Google Scholar 

  57. Kessler A, Müller G, Wied S, Crecelius A, Eckel J. (1998) Signalling pathways of an insulin-mimetic phoshoinositolglycan-peptide in muscle and adipose tissue. Biochem. J. 330: 277–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Müller G, Wied S, Crecelius A, Kessler A, Eckel J. (1997) Phosphoinositolglycan-peptides from yeast potently induce metabolic insulin actions in isolated rat adipocytes, cardiomyocytes and diaphragms. Endocrinology 138: 3459–3475.

    Article  PubMed  Google Scholar 

  59. Gustavsson J, Parpal S, Strålfors P. (1996) Insulin-stimulated glucose uptake involves the transition of glucose transporters to a caveloae-rich fraction within the plasma membrane: Implications for type II diabetes. Mol. Med. 2: 367–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Parpal S, Gustavsson J, Strålfors P. (1995) Isolation of phosphooligosaccharide/phosphoinositol glycan from caveolae and cytosol of insulin-stimulated cells. J. Cell. Biol. 131: 123–135.

    Article  Google Scholar 

  61. Müller G, Wied S, Piossek C, Bauer A, Bauer J, Frick W. (1998) Convergence and divergence of the signalling pathways for insulin and phosphoi-nositolglycans. Mol. Med. 4: 299–323.

    Article  PubMed  Google Scholar 

  62. Misek DE, Saltiel AR. (1992) An inositol phosphate glycan derived from a Trypanosome brucei glycosyl-phosphatidylinositol mimics some of the metabolic actions of insulin. J. Biol. Chem. 267: 16266–16273.

    PubMed  CAS  Google Scholar 

  63. Misek DE, Saltiel AR. (1994) An inositol phosphate glycan derived from a Trypanosome brucei glycosyl-phosphatidylinositol promotes protein dephosphorylation in rat epididymal adipocytes. Endocrinology 135: 1869–1876.

    Article  CAS  PubMed  Google Scholar 

  64. Abe S, Huang L, Larner J. (1996) Dephosphorylation of PDH by phosphoprotein phosphatases and its allosteric regulation by inositol glycans. Birkhäuser Verlag, Basel, p. 188.

    Google Scholar 

  65. Ortmeyer HK. (1998) Insulin increases liver protein phosphatase-1 and protein phosphatase-2C activities in lean, young adult rhesus monkeys. Horm. Metab. Res. 30: 705–710.

    Article  CAS  PubMed  Google Scholar 

  66. Huang LC, Heimark D, Linko J, Nolan R, Larner J. (1999) A model phosphatase 2C → phosphatase 1 activation cascade via dual control of inhibitor-1 (INH-1) and DARRP-32 dephosphorylation by two inositol glycan putative insulin mediators from beef liver. Biochem. Biophys. Res. Commun. 255: 150–156.

    Article  CAS  PubMed  Google Scholar 

  67. Proud CG, Denton RM. (1997) Molecular mechanisms for the control of translation by insulin. Biochem. J. 328: 329–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lazar DF, Knez JJ, Medof ME, Cuatrecasas P, Saltiel AR. (1994) Stimulation of glycogen synthesis by insulin in human erythroleukemia cells requires the synthesis of glycosyl-phosphatidylinositol. Proc. Natl. Acad. Sci. U.S.A. 91: 9665–9669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kunjara K, Caro HN, McLean P, Rademacher TW. (1995) Tissue specific release of inositol phosphoglycans. In: Svati J (ed). Biopolymers and Bioproducts: Structure, Function and Applications. p. 301.

  70. Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL. (1995) Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J. Clin. Invest. 95: 2195–2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bjornholm M, Kawano Y, Lehtihet M, Zierath JR. (1997) Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes 46: 524–527.

    Article  CAS  PubMed  Google Scholar 

  72. Rondinone CM, Wang LM, Lonnroth P, Wesslau C, Pierce JH, Smith U. (1997) Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. U.S.A. 94: 4171–4175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. J.E. Felm for critical reading of this manuscript and for helpful suggestions. D.R.J. holds a postdoctoral fellowship from the Association for International Cancer Research. The Department of Immunology and Oncology was founded and is supported by the C.S.I.C. and Pharmacia and Upjohn. This study was supported by grants from Dirección General de Investigation, Ciencia y Tecnología PM96-0075, and Europharma (Boehringer Ingelheim group) to I.V.-N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, D.R., Varela-Nieto, I. Diabetes and the Role of Inositol-Containing Lipids in Insulin Signaling. Mol Med 5, 505–514 (1999). https://doi.org/10.1007/BF03401978

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401978

Keywords

Navigation