Skip to main content
Log in

Convergence and Divergence of the Signaling Pathways for Insulin and Phosphoinositolglycans

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Phosphoinositolglycan molecules isolated from insulin-sensitive mammalian tissues have been demonstrated in numerous in vitro studies to exert partial insulin-mimetic activity on glucose and lipid metabolism in insulin-sensitive cells. However, their ill-defined structures, heterogeneous nature, and limited availability have prohibited the analysis of the underlying molecular mechanism. Phosphoinositolglycan-peptide (PIG-P) of defined and homogeneous structure prepared in large scale from the core glycan of a glycosyl-phosphatidylino-sitol-anchored membrane protein from Saccharomyces cerevisiae has recently been shown to stimulate glucose transport as well as a number of glucose-metabolizing enzymes and pathways to up to 90% (at 2 to 10 µm) of the maximal insulin effect in isolated rat adipocytes, cardiomyocytes, and diaphragms (G. Müller et al., 1997, Endocrinology 138: 3459–3476). Consequently, we used this PIG-P for the present study in which we compare its intracellular signaling with that of insulin. The activation of glucose transport by both PIG-P and insulin in isolated rat adipocytes and diaphragms was found to require stimulation of phosphatidylinositol (PI) 3-kinase but to be independent of functional p70S6kinase and mitogen-activated protein kinase. The increase in glycerol-3-phosphate acyltransferase activity in rat adipocytes in response to PIG-P and insulin was dependent on both PI 3-kinase and p70S6kinase. This suggests that the signaling pathways for PIG-P and insulin to glucose transport and metabolism converge at the level of PI 3-kinase. A component of the PIG-P signaling pathway located upstream of PI 3-kinase was identified by desensitization of isolated rat adipocytes for PIG-P action by combined treatment with trypsin and NaCl under conditions that preserved cell viability and the insulin-mimetic activity of sodium vanadate but completely blunted the insulin response. Incubation of the cells with either trypsin or NaCl alone was ineffective. The desensitized adipocytes were reconstituted for stimulation of lipogenesis by PIG-P by addition of the concentrated trypsin/salt extract. The reconstituted adipocytes exhibited 65–75% of the maximal PIG-P response and similar EC50 values for PIG-P (2 to 5 µm) compared with control cells. A pro-teinaceous N-ethylmaleimide (NEM)-sensitive component contained in the trypsin/salt extract was demonstrated to bind in a functional manner to the adipocyte plasma membrane of desensitized adipocytes via bipolar interactions. An excess of trypsin/salt extract inhibited PIG-P action in untreated adipocytes in a competitive fashion compatible with a receptor function for PIG-P of this protein. The presence of the putative PIG-P receptor protein in detergent-insoluble complexes prepared from isolated rat adipocytes suggests that caveolae/detergent-insoluble complexes of the plasma membrane may play a role in insulin-mimetic signaling by PIG-P. Furthermore, treatment of isolated rat diaphragms and adipocytes with PIG-P as well as with other agents exerting partially insulin-mimetic activity, such as PI-specific phospholipase C (PLC) and the sulfonylurea glimepiride, triggered tyrosine phosphorylation of the caveolar marker protein caveolin, which was apparently correlated with stimulation of lipogenesis. Strikingly, in adipocytes subjected to combined trypsin/salt treatment, PIG-P, PI-specific PLC, and glimepiride failed completely to provoke insulin-mimetic effects. A working model is presented for a signaling pathway in insulin-sensitive cells used by PIG(-P) molecules which involves GPI structures, the trypsin/salt- and NEM-sensitive receptor protein for PIG-P, and additional proteins located in caveolae/detergent-insoluble complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kahn CR. (1994) Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43: 1066–1084.

    Article  CAS  PubMed  Google Scholar 

  2. White MF, Kahn CR. (1994) The insulin signaling system. J. Biol Chem. 269: 1–4.

    PubMed  CAS  Google Scholar 

  3. Saltiel AR. (1996) Diverse signaling pathways in the cellular actions of insulin. Am. J. Physiol 270: 375–385.

    Google Scholar 

  4. White MF. (1997) The insulin signalling system and the 1RS proteins. Diabetologia 40: S12–S17.

    Article  Google Scholar 

  5. Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR. (1994) Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell Biol 14: 4902–4911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M. (1994) Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. J. Biol Chem. 269: 3568–3573.

    PubMed  CAS  Google Scholar 

  7. Liscovitch M, Cantley LC. (1995) Signal transduction and membrane traffic: The PITP/phosphoino-sitide connection. Cell 81: 659–662.

    Article  CAS  PubMed  Google Scholar 

  8. Myers MG, Wang LM, Sun X. (1994) The role of IRS-1/GRB2 complexes in insulin signaling. Mol Cell Biol. 14: 3577–3587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Myers MG, White MF. (1995) New frontiers in insulin receptor substrate signaling. Trends Endocrinol. Metab. 6: 209–215.

    Article  CAS  PubMed  Google Scholar 

  10. Häring HU. (1991) The insulin receptor: Signalling mechanism and contribution to the pathogenesis of insulin resistance. Diabetologia 34: 848–861.

    Article  PubMed  Google Scholar 

  11. Quon MJ, Butte AJ, Taylor SI. (1994) Insulin signal transduction pathways. Trends Endocrinol. Metab. 5: 369–376.

    Article  CAS  PubMed  Google Scholar 

  12. Saltiel AR. (1990) Second messengers of insulin action. Diabetes Care 13: 244–256.

    Article  CAS  PubMed  Google Scholar 

  13. Varela-Nieto I, Leon Y, Caro HN. (1996) Cell signalling by inositol phosphoglycans from different species. Comp. Biochem. Physiol. 115B: 223–241.

    Article  CAS  Google Scholar 

  14. Romero G, Larner J. (1993) Insulin mediators and the mechanism of insulin action. Adv. Pharmacol. 24: 21–50.

    Article  CAS  PubMed  Google Scholar 

  15. Jarett L, Kiechle FL, Macaulay SL, Parker JC, Kelly KL. (1985) Intracellular mediators of insulin action. In: Cech MP (ed). Molecular Basis of Insulin Action. Plenum Publishing, New York, pp. 171–182.

    Google Scholar 

  16. Saltiel AR, Fox JA, Sherline P, Cuatrecasas P. (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Science 233: 967–972.

    Article  CAS  PubMed  Google Scholar 

  17. Mato JM, Kelly KL, Abler A, Jarett L. (1987) Partial structure of an insulin-sensitive glycophos-pholipid. J. Biol Chem. 262: 2131–2137.

    PubMed  CAS  Google Scholar 

  18. Mato JM, Kelly KL, Abler A, Jarett L, Corkey BE, Cashel JA, Zopf D. (1987) Partial structure of an insulin-sensitive glycophospholipid. Biochem. Bio-phys. Res. Commun. 146: 764–770.

    Article  CAS  Google Scholar 

  19. Low MG, Saltiel AR. (1988) Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239: 268–275.

    Article  CAS  PubMed  Google Scholar 

  20. Cross GAM. (1990) Glycolipid anchoring of plasma membrane proteins. Annu. Rev. Cell Biol. 6: 1–39.

    Article  CAS  PubMed  Google Scholar 

  21. McConville MJ, Ferguson MAJ. (1993) The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem. J. 294: 305–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nosjean O, Briolay A, Roux B. (1997) Mammalian GPI proteins: sorting, membrane residence and functions. Biochim. Biophys. Acta 1331: 153–186.

    Article  CAS  PubMed  Google Scholar 

  23. Müller G, Schubert K, Fiedler F, Bandlow W. (1992) The cAMP-binding ectoprotein from Sac-charomyces cerevisiae is membrane-anchored by glycosyl-phosphatidylinositol. J. Biol Chem. 267: 25337–25346.

    PubMed  Google Scholar 

  24. Müller G, Wied S, Crecelius A, Kessler A, Eckel J. (1997) Phosphatidylinositolglycan-peptides from yeast potently induce metabolic insulin actions in isolated rat adipocytes, cardiomyocytes, and diaphragms. Endocrinology 138: 3459–3475.

    Article  PubMed  Google Scholar 

  25. Müller G, Dearey E-A, Pünter J. (1993) The sulfonylurea drug, glimepiride, stimulates release of glycosylphosphatidylinositol-anchored plasma membrane proteins from 3T3 adipocytes. Biochem. J. 289: 509–521.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Müller G, Dearey E-A, Korndörfer A, Bandlow W. (1994) Stimulation of a glycosyl phosphatidyli-nositol-specific phospholipase by insulin and the sulfonylurea, glimepiride, in rat adipocytes depends on increased glucose transport. J. Cell Biol. 126: 1267–1276.

    Article  PubMed  Google Scholar 

  27. Müller G, Wetekam E-M, Wied S, Bandlow W. (1994) Membrane association of lipoprotein lipase and a cAMP-binding ectoprotein in rat adipocytes. Biochemistry 33: 12149–12159.

    Article  PubMed  Google Scholar 

  28. Kahn BB. (1995) Lilly Lecture: Glucose transport: pivotal step in insulin action. Diabetes 45: 1644–1654.

    Article  Google Scholar 

  29. Romero GL, Gamez G, Huang LC, Lilley K, Luttrell L. (1990) Anti-inositolglycan antibodies selectively block some of the actions of insulin in intact BC3H1 cells. Proc. Natl Acad. Sci. U.S.A. 87: 1476–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lazar DF, Knez JJ, Medof ME, Cuatrecasas P, Saltiel AR. (1994) The stimulation of glycogen synthesis by insulin in human erythroleukemia cells requires the synthesis of glycosyl-phosphati-dylinositol. Proc. Natl. Acad. Sci. U.S.A. 91: 9665–9669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fonteies MC, Huang LC, Larner J. (1996) Infusion of pH 2.0 D-chiro-inositol glycan insulin putative mediator normalizes plasma glucose in streptozo-tocin diabetic rats at a dose equivalent to insulin without inducing hypoglycemia. Diabetologia 39: 731–734.

    Article  Google Scholar 

  32. Asplin I, Galasko G, Larner J. (1993) C/nrc-inositol deficiency and insulin resistance: A comparison of the c/niro-inositol- and myo-inositol-containing insulin mediators isolated from urine, hemodialy-sate, and muscle of control and type II diabetic subjects. Proc. Natl. Acad. Sci. U.S.A. 90: 5924–5928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shashkin PN, Shashkina EF, Fernqvist-Forbes E, Zhou Y-P, Grill V, Katz A. (1997) Insulin mediators in man: Effects of glucose ingestion and insulin resistance. Diabetologia 40: 557–563.

    Article  CAS  PubMed  Google Scholar 

  34. Saltiel AR, Cuatrecasas P. (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol gly-colipid. Proc. Natl. Acad. U.SA. 83: 5793–5797.

    Article  CAS  Google Scholar 

  35. Kelly KL, Merida I, Wong EHA, DiCenzo D, Mato JM. (1987) A phospho-oligosaccharide mimics the effect of insulin to inhibit isoproterenol-depen-dent phosphorylation of methyltransferase in isolated adipocytes. J. Biol. Chem. 262: 15285–15290.

    PubMed  CAS  Google Scholar 

  36. Saltiel AR. (1987) Insulin generates an enzyme modulator from hepatic plasma membranes; regulation of adenosine 3′,5′-monophosphate phosphodiesterase, pyruvate dehydrogenase, and adenylate cyclase. Endocrinology 120: 967–972.

    Article  CAS  PubMed  Google Scholar 

  37. Saltiel AR, Sorbara-Cazan LR. (1987) Inositol glycan mimics the action of insulin on glucose utilization in rat adipocytes. Biochem. Biophys. Res. Commun. 149: 1084–1092.

    Article  CAS  PubMed  Google Scholar 

  38. Vila MC, Milligan G, Standaert ML, Farese RV. (1990) Insulin activates glycerol-3-phosphate acyltransferase (de novo phosphatidic acid synthesis) through a phospholipid-derived mediator. Apparent involvement of G, and activation of a phospholipase C. Biochemistry 29: 8735–8740.

    Article  CAS  PubMed  Google Scholar 

  39. Gaulton GN. (1991) Differential regulation of glycosylated phosphatidylinositol subtypes by insulin. Diabetes 40: 1297–1304.

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki S, Sugawara K, Satoh Y, Toyota T. (1991) Insulin stimulates the generation of two putative insulin mediators, inositol-glycan and diacylglyc-erol in BC3H-1 myocytes. J. Biol. Chem. 266: 8115–8121.

    PubMed  CAS  Google Scholar 

  41. Misek DE, Saltiel AR. (1992) An inositol phosphate glycan derived from a Trypanosoma brucei glycosyl-phosphatidylinositol mimics some of the metabolic actions of insulin. J. Biol. Chem. 267: 16266–16273.

    PubMed  CAS  Google Scholar 

  42. Deeg MA, Brass EP, Rosenberry TL. (1993) Inositol glycan phosphate derived from human erythrocyte acetylcholinesterase glycolipid anchor and inositol cyclic 1,2-phosphate antagonize glucagon activation of glycogen Phosphorylase. Diabetes 42: 1318–1323.

    Article  CAS  PubMed  Google Scholar 

  43. Farese RV, Standaert ML, Yamada K, Huang LC, Zhang C, Cooper DR, Wang Z, Yang Y, Suzuki S, Toyota T, Larner J. (1994) Insulin-induced activation of glycerol-3-phosphate acyltransferase by a c/z/ra-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats. Proc. Natl. Acad. Sci. U.S.A. 91: 11040–11044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gaulton GN, Pratt JC. (1994) Glycosylated phosphatidylinositol molecules as second messengers. Semin. Immunol. 6: 97–104.

    Article  CAS  PubMed  Google Scholar 

  45. Farese RV. (1990) Lipid-derived mediators in insulin action. Proc. Soc. Exp. Biol. Med. 195: 312–324.

    Article  CAS  PubMed  Google Scholar 

  46. Romero GL, Luttrell L, Rogol A, Zeller K, Hewlett E, Larner J. (1988) Phosphatidylinositol-glycan anchors of membrane proteins: Potential precursors of insulin mediators. Science 240: 509–511.

    Article  CAS  PubMed  Google Scholar 

  47. Movahedi S, Hooper NM. (1997) Insulin stimulates the release of the glycosyl phosphatidylinos-itol-anchored membrane dipeptidase from 3T3-L1 adipocytes through the action of a phospholipase C. Biochem. J. 326: 531–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Larner J. (1987) Banting Lecture: Insulin signaling mechanisms. Lessons from the old testament of glycogen metabolism and the new testament of molecular biology. Diabetes 37: 262–275.

    Article  Google Scholar 

  49. Mato JM. (1989) Insulin mediators revisited. Cell. Signal. 1: 143–146.

    Article  CAS  PubMed  Google Scholar 

  50. Saltiel AR, Osterman DG, Darnell JC, Sorbara-Cazan LR, Chan BL, Low MG, Cuatrecasas P. (1988) The function of glycosyl phosphoinositides in hormone action. Phil. Trans. R. Soc. Lond. B320: 345–358.

    Article  Google Scholar 

  51. Su B, Waneck GL, Flavell RA, Bothwell ALM. (1991) The glycosyl phosphatidylinositol anchor is critical for Ly-6A/E mediated T cell activation. J. Cell Biol. 112: 377–384.

    Article  CAS  PubMed  Google Scholar 

  52. Thomas PM, Samelson LE. (1992) The glycophos-phatidylinositol-anchored Thy-1 molecule interacts with the p60fyn protein tyrosine kinase in T cells. J. Biol. Chem. 267: 12317–12322.

    PubMed  CAS  Google Scholar 

  53. Anderson RGW. (1993) Caveolae: where incoming and outgoing messengers meet. Proc. Natl. Acad. Sci. U.S.A. 90: 10909–10913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Anderson RGW. (1993) Plasmalemmal caveolae and GPI-anchored membrane proteins. Curr. Opin. Cell Biol 5: 647–652.

    Article  CAS  PubMed  Google Scholar 

  55. Rothberg KG, Henser JE, Donzell WC, Ying Y-S, Glenney JR, Anderson RGW. (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68: 673–682.

    Article  CAS  PubMed  Google Scholar 

  56. Kurzchalia TV, Dupree P, Monier S. (1994) VIP21-Caveolin, a protein of the trans-golgi network and caveolae. FEBS Lett. 346: 88–91.

    Article  CAS  PubMed  Google Scholar 

  57. Ying Y-S, Anderson RGW, Rothberg KG. (1992) Each caveolae contains multiple glycosyl-phos-phatidylinositol-anchored membrane proteins. Cold Spring Harbor Quant. Biol 57: 593–604.

    Article  CAS  Google Scholar 

  58. Lisanti MP, Scherer PE, Tang ZL, Sargiacomo M. (1994) Caveolae, caveolin and caveolin-rich membrane domains: A signaling hypothesis. Trends Cell Biol. 4: 231–235.

    Article  CAS  PubMed  Google Scholar 

  59. Bickel PE, Scherer PE, Schnitzer JE, Oh P, Lisanti MP, Lodish HF. (1997) Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J. Biol Chem. 272: 13793–13802.

    Article  CAS  PubMed  Google Scholar 

  60. Parton RG. (1996) Caveolae and caveolins. Curr. Opin. Cell Biol 8: 542–548.

    Article  CAS  PubMed  Google Scholar 

  61. Rodgers W, Crise B, Rose JK. (1994) Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol. Cell Biol. 14: 5384–5391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Robbins SM, Quintreil NA, Bishop JM. (1995) Myristoylation and differential palmitoylation of the HCK protein-tyrosine kinases govern their attachment to membranes and association with caveolae. Mol Cell Biol 15: 3507–3515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stefanova IV, Horejsi V, Ansotegui IJ, Knapp W, Stockinger H. (1991) GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254: 1016–1019.

    Article  CAS  PubMed  Google Scholar 

  64. Shenoy-Scaria AM, Dietzen DJ, Kwong J, Link DC, Lublin DM. (1994) Cysteine of Src family protein tyrosine kinases determines palmitoylation and localization in caveolae. J. Cell Biol 126: 353–363.

    Article  CAS  PubMed  Google Scholar 

  65. Brown DA. (1993) The tyrosine kinase connection: how GPI-anchored proteins activate T cells. Curr. Opin. Immunol 5: 349–354.

    Article  CAS  PubMed  Google Scholar 

  66. Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS, Lisanti MP. (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. J. Biol Chem. 271: 15160–15165.

    Article  CAS  PubMed  Google Scholar 

  67. Scherer PE, Lisanti MP, Baldini G, Sargiacomo M, Mastick CC, Lodish HF. (1994) Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J. Cell Biol. 127: 1233–1243.

    Article  CAS  PubMed  Google Scholar 

  68. Parpal S, Gustavsson J, Stralfors S. (1995) Isolation of phosphooligosaccharide/phosphoinositol glycan from caveolae and cytosol of insulin-stimulated cells. J. Cell Biol. 131: 125–135.

    Article  CAS  PubMed  Google Scholar 

  69. Gustavsson J, Parpal S, Stralfors P. (1996) Insulin-stimulated glucose uptake involves the transition of glucose transporters to a caveolae-rich fraction within the plasma membrane. Mol. Med. 2: 367–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kandror KV, Stephens JM, Pilch PF. (1995) Expression and compartmentalization of caveolin in adipose cells: Coordinate regulation with and structural segregation from GLUT4. J. Cell Biol 129: 999–1006.

    Article  CAS  PubMed  Google Scholar 

  71. Munoz P, Mora S, Sevilla L, Kaliman P, Tomas E, Guma A, Testar X, Palacin M, Zorzano A. (1996) Expression and insulin-regulated distribution of caveolin in skeletal muscle. J. Biol. Chem. 271: 8133–8139.

    Article  CAS  PubMed  Google Scholar 

  72. Mastick CC, Brady MJ, Saltiel AR. (1995) Insulin stimulates the tyrosine phosphorylation of caveolin. J. Cell Biol 129: 1523–1531.

    Article  CAS  PubMed  Google Scholar 

  73. Müller G, Wied S. (1993) The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin resistant rat adipocytes in vitro. Diabetes 42: 1852–1867.

    Article  PubMed  Google Scholar 

  74. Müller G, Ertl J, Gerl M, Preibisch G. (1997) Lep-tin impairs metabolic actions of insulin in isolated rat adipocytes. J. Biol Chem. 272: 10585–10593.

    Article  PubMed  Google Scholar 

  75. Müller G, Wied S, Wetekam E-M, Crecelius A, Unkelbach A, Pünter J. (1994) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas, glimepiride and glibenclamide, is correlated with modulations of the cAMP regulatory cascade. Biochem. Pharmacol 58: 985–996.

    Article  Google Scholar 

  76. Müller G, Jordan H, Petry S, Wetekam E-M, Schindler P. (1997) Analysis of lipid metabolism in adipocytes using a fluorescent fatty acid derivative. I. Insulin stimulation of lipogenesis. Biochim. Biophys. Acta 1347: 23–39.

    Article  PubMed  Google Scholar 

  77. Brown DA, Rose JK. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533–544.

    Article  CAS  PubMed  Google Scholar 

  78. Sargiacomo M, Sudol M, Tang Z-L, Lisanti MP. (1993) Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins from a caveolin-rich insoluble complex in MDCK cells. J. Cell Biol. 122: 789–807.

    Article  CAS  PubMed  Google Scholar 

  79. Müller G, Zimmermann R. (1987) Import of honeybee prepromelittin into the endoplasmic reticulum: structural basis for independence of SRP and docking protein. EMBO J. 6: 2099–2107.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kessler A, Müller G, Wied S, Crecelius A, Eckel J. (1998) Signalling pathways of an insulin-mimetic phosphoinositolglycan-peptide in muscle and adipose tissue. Biochem. J. 330: 277–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vlahos CJ, Matter WF, Hui KY, Brown RF. (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2- (4-morpholinyl) -8-phenyl-4H-1 -benzo-pyran-4-one (LY294002). J. Biol. Chem. 269: 5241–5248.

    PubMed  CAS  Google Scholar 

  82. Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabree GR. (1992) Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 358: 70–73.

    Article  CAS  PubMed  Google Scholar 

  83. Lazar DF, Wiese RJ, Brady MJ, Mastick CC, Waters SB, Yamauchi K, Pessin JE, Cuatrecasas P, Saltiel AR. (1995) Mitogen-activated protein kinase inhibition does not block the stimulation of glucose utilization by insulin. J. Biol Chem. 270: 20801–20807.

    Article  CAS  PubMed  Google Scholar 

  84. Marte BM, Downward J. (1997) PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 22: 355–358.

    Article  CAS  PubMed  Google Scholar 

  85. Sekar N, Li J, Shechter Y. (1996) Vanadium salts as insulin substitutes: mechanism of action, scientific and therapeutic tool in diabetes mellitus research. Crit. Rev. Biochem. Mol. Biol. 31: 339–359.

    Article  CAS  PubMed  Google Scholar 

  86. Tsiani E, Fantus IG. (1997) Vanadium compounds. Biological actions and potential as pharmacological agents. Trends Endocrinol. Metab. 8: 51–58.

    Article  CAS  PubMed  Google Scholar 

  87. Müller G, Satoh Y, Geisen K. (1995) Extrapancre-atic effects of sulfonylureas—a comparison between glimepiride and conventional sulfonylureas. Diabetes Res. Clin. Bract. 28: S115–S137.

    Article  Google Scholar 

  88. Müller G, Geisen K. (1996) Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at adipocytes. Horm. Metab. Res. 28: 469–487.

    Article  PubMed  Google Scholar 

  89. Macaulay SL, Larkins RG. (1990) Phospholipase C mimics insulin action on pyruvate dehydrogenase and insulin mediator generation but not glucose transport or utilization. Cell. Signal. 2: 9–19.

    Article  CAS  PubMed  Google Scholar 

  90. Tachado SD, Schofield L. (1994) Glycosylphos-phatidylinositol toxin of Trypanosoma brucei regulates IL-la and TNF-a expression in macrophages by protein tyrosine kinase mediated signal transduction. Biochem. Biophys. Res. Commun. 205: 984–991.

    Article  CAS  PubMed  Google Scholar 

  91. Argetsinger LS, Hsu GW, Myers MG, Billestrup N, White MF, Carter-Su C. (1995) Growth hormone, interferon-γ, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J. Biol. Chem. 270: 14685–14692.

    Article  CAS  PubMed  Google Scholar 

  92. Johnston JA, Wang L-M, Hanson EP, Sun X-J, White MF, Oakes SA, Pierce JH, O’Shea JJ. (1995) Interleukins 2, 4, 7, and 15 stimulate tyrosine phosphorylation of insulin receptor substrates 1 and 2 in T cells. J. Biol. Chem. 270: 28527–28530.

    Article  CAS  PubMed  Google Scholar 

  93. Saad MJA, Velloso LA, Carvalho CRO. (1995) Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart. Biochem. J. 310: 741–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Uddin S, Yenush L, Sun X-J, Sweet ME, White MF, Platanias LC. (1995) Interferon-a engages the insulin receptor substrate-1 to associate with the phosphatidylinositol 3’ -kinase. J. Biol. Chem. 270: 15938–15941.

    Article  CAS  PubMed  Google Scholar 

  95. Kowalski-Chauvel A, Pradayrol L, Vaysse N, Seva C. (1996) Gastrin stimulates tyrosine phosphorylation of insulin receptor substrate 1 and its association with Grb2 and the phosphatidylinositol 3-kinase. J. Biol. Chem. 271: 26356–26361.

    Article  CAS  PubMed  Google Scholar 

  96. Velloso IA, Folli F, Sun XJ, White MF, Saad MJA, Kahn CR. (1996) Cross-talk between the insulin and angiotensin signaling systems. Proc. Natl. Acad. Sci. U.S.A. 93: 12490–12495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Flier JS. (1993) An overview of insulin resistance. In: Moller DE (ed). Insulin Resistance. John Wiley & Sons, New York, pp. 1–7.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to C. Jung, S. Welte, and A. Crecelius for excellent technical assistance (Hoechst Marion Roussel Deutschland GmbH), Prof. J. Eckel for helpful discussions (Institute for Diabetes Research, University of Düsseldorf, Germany), Ms. G. McConaghy (Hoechst Marion Roussel Deutschland GmbH) for expert editorial assistance during preparation of the manuscript, and R. Utermark (Hoechst Marion Roussel Deutschland GmbH) for valuable support in preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Müller.

Additional information

Communicated by P. Cuatrecasas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, G., Wied, S., Piossek, C. et al. Convergence and Divergence of the Signaling Pathways for Insulin and Phosphoinositolglycans. Mol Med 4, 299–323 (1998). https://doi.org/10.1007/BF03401738

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401738

Keywords

Navigation