Skip to main content
Log in

Cardiovascular effects of sulphonylurea derivatives

Implications for the treatment of NIDDM?

  • For Debate
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

Sulphonylurea derivatives are widely used in the treatment of non-insulin-dependent diabetes mellitus. The mechanism of action of the insulinotropic effect of these agents is based on the closure of adenosine-5′-triphosphate (ATP)-sensitive potassium channels (KATP-channels) in the beta cells of the pancreas. In the last decade, these KATP-channels have been demonstrated in myocardial cells as well as in vascular smooth muscle cells. During myocardial ischaemia, the KATP-channels are thought to open by a fall in the cytosolic ATP concentration. The increase in the extracellular adenosine concentration, and the release of endothelium-derived hyperpolarizing factor (EDHF) during ischaemia may further contribute to the opening of cardiovascular KATP-channels. Independently from the mechanism of opening, sulphonylurea derivatives have been reported to block the opening of cardiovascular KATP-channels. Related to the role of KATP-channel-opening in the (patho)physiology of ischaemia, the use of sulphonylurea derivatives significantly modifies the outcome of experimental myocardial infarction. Sulphonylurea derivatives impair the recovery of the contractile function and increase the ultimate infarct size in animal models. In contrast, sulphonylurea derivatives have a beneficial effect on the incidence of ventricular fibrillation as occurs after ischaemic incidents of the myocardium. Based on these experimental observations, human studies are indicated to investigate whether the use of these drugs modifies the clinical outcome of cardiovascular events in patients with non-insulin dependent diabetes mellitus. [Diabetologia (1995) 38: 116–121]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

KATP-channel:

Adenosine-5′-triphosphate dependent potassium channel

EDHF:

endothelium-derived hyperpolarizing factor

NIDDM:

non-insulin dependent diabetes mellitus

References

  1. Abbot RD, Brand FN, Kannel WB (1990) Epidemiology of some peripheral arterial findings in diabetic men and women: experiences from the Framingham study. Am J Med 88: 376–381

    Google Scholar 

  2. Fuller JH, Shipley MJ, Rose G, Jarret RJ, Keen H (1983) Mortality from coronary heart disease and stroke in relation to degree of glycaemia: the Whitehall study. BMJ 287: 867–870

    CAS  PubMed  Google Scholar 

  3. Hiller R, Sperduto RD, Podgor MJ, Ferris FL, Wilson PWF (1988) Diabetic retinopathy and cardiovascular disease in type II diabetics. The Framingham heart study and the Framingham eye study. Am J Epidemiol 128: 402–409

    CAS  PubMed  Google Scholar 

  4. Groop LC (1992) Sulfonylureas in NIDDM: Diabetes Care 15: 737–754

    CAS  PubMed  Google Scholar 

  5. Gerich JE (1989) Oral hypoglycemic agents. N Engl J Med 321: 1231–1245

    CAS  PubMed  Google Scholar 

  6. Noma A (1983) ATP-regulated K-channels in cardiac muscle. Nature 305: 147–148

    Article  CAS  PubMed  Google Scholar 

  7. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT (1989) Hyperpolarizing vasodilators activate ATP-sensitive K+-channels in arterial smooth muscle. Science 245: 177–180

    CAS  PubMed  Google Scholar 

  8. Edwards G, Weston AH (1990) Potassium channel openers and vascular smooth muscle relaxation. Pharmac Ther 48: 237–258

    CAS  Google Scholar 

  9. Katz AM (1993) Cardiac ion channels. N Engl J Med 328: 1244–1251

    CAS  PubMed  Google Scholar 

  10. Nichols CG, Ripoll C, Lederer WJ (1991) ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circ Res 68: 280–287

    CAS  PubMed  Google Scholar 

  11. Brayden JE (1991) Hyperpolarization and relaxation of resistance arteries in response to adenosine diphosphate. Circ Res 69: 1415–1420

    CAS  PubMed  Google Scholar 

  12. Hori M, Kitakaze M (1991) Adenosine, the heart, and coronary circulation. Hypertension 18: 565–574

    CAS  PubMed  Google Scholar 

  13. Kirsch GE, Codina J, Birnbaumer L, Brown AM (1990) Coupling of ATP-sensitive K-channels to A1-receptors by G proteins in rat ventricular myocytes. Am J Physiol 259: H820-H826

    CAS  PubMed  Google Scholar 

  14. Milner P, Ralevic V, Hopwood AM et al. (1989) Ultrastructural localisation of substance P and choline acetyltransferase in endothelial cells of rat coronary artery and release of substance P and acetylcholine during hypoxia. Experientia 45: 121–125

    Article  CAS  PubMed  Google Scholar 

  15. Milner P, Bodin P, Loesch A, Burnstock G (1990) Rapid release of endothelin and ATP from isolated aortic endothelial cells exposed to increased flow. Bioch Biophys Res Comm 170: 649–656

    CAS  Google Scholar 

  16. Burnstock G (1990) Local mechanisms of blood flow control by perivascular nerves and endothelium. J Hypertension 8 [Suppl 7]: S95-S106

    CAS  Google Scholar 

  17. Suzuki H, Chen G, Yamamoto Y (1992) Endothelium-derived hyperpolarizing factor (EDHF). Jpn Circ J 56: 170–174

    CAS  PubMed  Google Scholar 

  18. Brayden JE (1990) Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation. Am J Physiol 259: H668-H673

    CAS  PubMed  Google Scholar 

  19. Meisheri KD, Khan SA, Martin JL (1993) Vascular pharmacology of ATP-sensitive K-channels: interactions between glyburide and K-channel-openers. J Vasc Res 30: 2–12

    CAS  PubMed  Google Scholar 

  20. Ogawa N, Fukata Y, Kaneta S, Jinno Y, Fukushima H, Nishikori K (1992) Comparison of KRN2391 with nicorandil and nifedipine on canine coronary blood flow: antagonism by glibenclamide. J Cardiovasc Pharmacol 20: 11–17

    CAS  PubMed  Google Scholar 

  21. Duncker DJ, Zon van NS, Altman JD, Pavek DJ, Bache RJ (1993) Role of KATP-channels in coronary vasodilation during exercise. Circulation 88: 1245–1253

    CAS  PubMed  Google Scholar 

  22. Aversano T, Ouyang P, Silverman H (1991) Blockade of the ATP-sensitive potassium channel modulates reactive hyperemia in the canine coronary circulation. Circ Res 69: 618–622

    CAS  PubMed  Google Scholar 

  23. Belloni FL, Hintze TH (1991) Glibenclamide attenuates adenosine-induced bradycardia and coronary vasodilation. Am J Phys 261: H720-H727

    CAS  Google Scholar 

  24. Yoneyama F, Yamada H, Satoh K, Taira N (1992) Vasodepressor mechanisms of 2-(1-octynyl)-adenosine (YT-146), a selective adenosine A2-receptor agonist, involve the opening of glibenclamide-sensitive potassium channels. Eur J Pharmacol 213: 199–204

    Article  CAS  PubMed  Google Scholar 

  25. Spinelli W, Sorota S, Siegal M, Hoffman BF (1991) Antiarrhythmic actions of the ATP-regulated K+-current activatied by pinacidil. Circ Res 68: 1127–1137

    CAS  PubMed  Google Scholar 

  26. Murakami M, Furukawa Y, Karasawa Y, Ren L-M, Takayama S, Chiba S (1992) Inhibition by glibenclamide of negative chronotropic and inotropic responses to pinacidil, acetylcholine, and adenosine in the isolated dog heart. J Cardiovasc Pharmacol 19: 618–624

    CAS  PubMed  Google Scholar 

  27. Cole WC, Mcpherson CD, Sontag D (1991) ATP-regulated K+-channels protect the myocardium against ischemia/reperfusion damage. Circ Res 69: 571–581

    CAS  PubMed  Google Scholar 

  28. Auchampach JA, Maruyama M, Cavero I, Gross GJ (1992) Pharmacological evidence for a role of ATP-dependent potassium channels in myocardial stunning. Circulation 86: 311–319

    CAS  PubMed  Google Scholar 

  29. Gross GJ, Auchampach JA (1992) Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 70: 223–233

    CAS  PubMed  Google Scholar 

  30. Thornton JD, Thornton CS, Sterling DL, Downey JM (1993) Blockade of ATP-sensitive potassium channels increases infarct size but does not prevent preconditioning in rabbit hearts. Circ Res 72: 44–49

    CAS  PubMed  Google Scholar 

  31. Daut J, Maier-Rudolph W, Beckerath vN, Mehrke G, Günther K, Goedel-Meinen L (1990) Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247: 1341–1344

    CAS  PubMed  Google Scholar 

  32. Murroy CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124–1136

    Google Scholar 

  33. Thornton JD, Liu GS, Olsson RA, Downey JM (1992) Intravenous pretreatment with A1-selective adenosine analogues protects the heart against infarction. Circulation 85: 659–665

    CAS  PubMed  Google Scholar 

  34. Toombs CF, McGee DS, Johnston WE, Vinten-Johansen J (1992) Myocardial protective effects of adenosine. Infarct size reduction with pretreatment and continued receptor stimulation during ischemia. Circulation 86: 986–994

    CAS  PubMed  Google Scholar 

  35. Belle van H, Verheyen W, Ver Donck K, Janssen PAJ, Robertson JIS (1992) Prevention of catecholamine-induced cardiac damage and death with a nucleoside transport inhibitor. J Cardiovasc Pharmacol 20: 173–178

    PubMed  Google Scholar 

  36. Smits P, Lenders JWM, Thien Th (1990) Caffeine and theophylline attenuate adenosine-induced vasodilation in humans. Clin Pharmacol Ther 48: 410–418

    CAS  PubMed  Google Scholar 

  37. Edlund A, Siden Å, Sollevi A (1987) Evidence for an antiaggregatory effect of adenosine at physiological concentrations and for its role in the action of dipyridamole. Thromb Res 45: 183–190

    Article  CAS  PubMed  Google Scholar 

  38. Smits P, Lenders JWM, Willemsen JJ, Thien Th (1991) Adenosine attenuates the response to sympathetic stimuli in man. Hypertension 18: 216–223

    CAS  PubMed  Google Scholar 

  39. Smits P, Lenders JWM, Willemsen JJ, den Arend JACJ, Thien Th (1991) Adenosine attenuates the vasoconstrictor response to the cold pressor test in humans. J Cardiovasc Pharmacol 17: 1019–1022

    CAS  PubMed  Google Scholar 

  40. DiMarco JP, Sellers TD, Lerman BB, Greenberg ML, Berne RM, Belardinelli L (1985) Diagnostic and therapeutic use of adenosine in patients with supraventricular tachyarrhythmias. J Am Coll Cardiol 6: 417–425

    CAS  PubMed  Google Scholar 

  41. Grover GJ, Sleph PG, Dzwoncyk BS (1992) Role of myocardial ATP-sensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine A1-receptors. Circulation 86: 1310–1316

    CAS  PubMed  Google Scholar 

  42. Billman G, Avendano CE, Halliwill JR, Burroughs JM (1993) The effects of the ATP-dependent potassium channel antagonist glyburide on coronary blood flow and susceptibility to ventricular fibrillation in anaesthetized dogs. J Cardiovasc Pharmacol 21: 197–204

    CAS  PubMed  Google Scholar 

  43. Sanguinetti MC (1992) Modulation of potassium channels by antiarrhythmic and antihypertensive drugs. Hypertension 19: 228–236

    CAS  PubMed  Google Scholar 

  44. Tosaki A, Hellegouarch A (1994) ATP-sensitive potassium channel blocking agent ameliorates, but the opening agent aggravates, ischemia/reperfusion-induced injury. J Am Cell Cardiol 23: 487–496

    CAS  Google Scholar 

  45. Jönsson A, Rydberg T, Ekberg G, Hallengren B, Melander A (1994) Slow elimination of glyburide in NIDDM subjects. Diabetes Care 17: 142–145

    PubMed  Google Scholar 

  46. Melander A, Bitzén P-O, Faber O, Groop L (1989) Sulphonylurea antidiabetic drugs. An update of their clinical pharmacology and rational therapeutic use. Drugs 37: 58–72

    CAS  PubMed  Google Scholar 

  47. Stenman S, Melander A, Groop P-H, Groop LC (1993) What is the benefit of increasing the sulfonylurea dose? Ann Int Med 118: 169–172

    CAS  PubMed  Google Scholar 

  48. Landry DW, Oliver JA (1992) The ATP-sensitive potassium channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest 89: 2071–2074

    CAS  PubMed  Google Scholar 

  49. Zeiher AM, Drexler H, Wollschläger H, Just H (1991) Endothelial dysfunction of the coronary microvasculature is associated with impaired coronary blood flow regulation in patients with early atherosclerosis. Circulation 84: 1984–1992

    CAS  PubMed  Google Scholar 

  50. University Group Diabetes Program (1970) A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes mellitus: II. Mortality results. Diabetes 19 [Suppl 2]: 785–830

    Google Scholar 

  51. Klimt CR, Canner PHPL, Jacobs DR, Tominaga S (1977) The prognostic importance of plasma glucose levels and of the use of oral hypoglycemic drugs after myocardial infarction in men. Diabetes 26: 453–465

    CAS  Google Scholar 

  52. Soler NG, Bennet MA, Lamb P, Pentecost BL, FitzGerald MG, Malins JM (1974) Coronary care for myocardial infarction in diabetics. Lancet i: 475–477

    Google Scholar 

  53. Keen H (1971) Factors influencing the progress of atherosclerosis in the diabetic. Acta Diabetol Lat 8 [Suppl 1]: 444–456

    PubMed  Google Scholar 

  54. Paasikivi J, Wahlberg F (1971) Preventive tolbutamide treatment and arterial disease in mild hyperglycaemia. Diabetologia 7: 323–327

    Article  CAS  PubMed  Google Scholar 

  55. Ohneda A, Maruhama Y, Itabashi H et al. (1978) Vascular complications and long-term administration of oral hypoglycemic agents in patients with diabetes mellitus. Tohoku J Exp Med 124: 205–222

    CAS  PubMed  Google Scholar 

  56. Knowler WC, Sartor G, Scherstén B (1987) Effects of glucose tolerance and treatment of abnormal tolerance on mortality in Malmöhus County, Sweden. Diabetologia 30: 541 A (Abstract)

    Google Scholar 

  57. Persson G (1977) Cardiovascular complications in diabetics and subjects with reduced glucose tolerance. Act Med Scand [Suppl] 605: 25–37

    CAS  Google Scholar 

  58. Gilbert JP, Saracci R, Meier P, Zelen M, Rümke C, White C (1975) Report of the committee for the assessment of biometric aspects of controlled trials of hypoglycemic agents. J Am Med Assoc 231:583–608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smits, P., Thien, T. Cardiovascular effects of sulphonylurea derivatives. Diabetologia 38, 116–121 (1995). https://doi.org/10.1007/BF02369361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02369361

Key words

Navigation