Skip to main content
Log in

Sequence variation at theSec-1 locus of rye,Secale cereale (Poaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

This paper describes the structure of a 9.2-kb repeat unit of DNA, which represents oneω-secalin gene and spacer sequence located at theSec-1 locus on the short arm of chromosome 1 of rye. The gene units at theSec-1 locus comprise 1.1 kb representing the gene and 8.1 kb of spacer sequence separating the genes. A sequence comparison of nine genes and their promoter regions from theSec-1 locus, reveals that there is greater variation within the coding sequence than there is within the promoter regions. The gene sequence variation is discussed in terms of the size variation seen for theω-secalin proteins in rye species. The results include a comparison of promoter sequences from members of the Triticeae to examine the degree of conservation between other seed storage protein genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basten, C. J., Ohta, T., 1992: Simulation study of a multigene family, with special reference to the evolution of compensatory advantageous mutations. — Genetics132: 247–252.

    Google Scholar 

  • Bunce, N. A. C., White, P. R., Shewry, P. R., 1985: Variation in estimates of molecular weights of cereal prolamins by SDS-PAGE. — J. Cereal Sci.3: 131–142.

    Google Scholar 

  • Clarke, B. C., Mukai, Y., Appels, R., 1996: TheSec-1 locus on the short arm of chromosome 1R of rye (Secale cereale). — Chromosoma105: 269–275.

    Google Scholar 

  • Colot, V., Robert, L. S., Kavanagh, T. A., Bevan, M. W., Thompson, R. D., 1987: Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco. — EMBO J.6: 3559–3564.

    Google Scholar 

  • —, 1989: Molecular characterization of an active wheat LMW glutenin gene and its relation to other wheat and barley prolamin genes. — Molec. Gen. Genet.216: 81–90.

    Google Scholar 

  • Entwistle, J., Knudsen, S., Müller, M., Cameron-Mills, V., 1991: Amber codon supression: the in vivo and in vitro analysis of two C-hordein genes from barley — Pl. Molec. Biol.17: 1217–1231.

    Google Scholar 

  • Forde, B. G., Heyworth, A., Pywell, J., Kreis, M., 1985: Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in the endosperm storage protein genes from barley, wheat and maize. — Nucl. Acids Res.13: 7327–7339.

    Google Scholar 

  • Heidecker, G., Chaudhuri, S., Messing, J., 1991: Highly clustered zein gene sequences reveal evolutionary history of the multigene family. — Genomics10: 719–732.

    Google Scholar 

  • Hill, D. E., Hope, I. A., Macke, J. P., Struhl, K., 1986: Saturation mutagenesis of the yeasthis3 regulatory site: requirements for transcriptional induction and for binding by GCN4 activator protein. — Science234: 451–457.

    Google Scholar 

  • Hull, G. A., Halford, N. G., Kreis, M., Shewry, P. R., 1991: Isolation and characterisation of genes encoding rye prolamins containing a highly repetitive sequence motif. — Pl. Molec. Biol.17: 1111–1115.

    Google Scholar 

  • Kasarda, D. D., Autran, J.-C., Lew, E. J.-L., Nimmo, C. C., Shewry, P. R., 1983: Nterminal amino acid sequences ofω-gliadins andω-secalins implications for the evolution of prolamin genes. — Biochim. Biophys. Acta747: 138–150.

    Google Scholar 

  • Kreis, M., Shewry, P. R., 1989: Unusual features of cereal seed protein structure and evolution. — BioEssays10: 201–207.

    Google Scholar 

  • Liu, C.-N, Rubenstein, I., 1992: Molecular characterization of two types of 22 kilodalton α-zein genes in a gene cluster in maize. — Molec. Gen. Genet.234: 244–253.

    Google Scholar 

  • —, 1993: Transcriptional characterization of anα-zein gene cluster in maize. — Pl. Molec. Biol.22: 323–336.

    Google Scholar 

  • Maniatis, T., Fritsch, E. F., Sambrook, J., (Eds), 1982: Molecular cloning: a laboratory manual. — Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Miflin, B. J., Forde, B. G., Shewry, P. R., Kreis, M., Forde, J., 1984: Repeated sequences in cereal storage proteins. — Oxford Surv. Pl. Molec. Cell Biol.1: 231–234.

    Google Scholar 

  • Müller, M., Knudsen, S., 1993: The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. — Pl. J.4: 343–355.

    Google Scholar 

  • Rafalski, J. A., 1986: Structure of wheat gamma-gliadin genes. — Gene43: 221–229.

    Google Scholar 

  • Reddy, P. A., Appels, R., 1993: Analysis of a genomic DNA segment carrying the wheat high-molecular-weight (HMW) glutenin B × 17 subunit and its use as a RFLP marker. Theor. Appl. Genet.85: 616–624.

    Google Scholar 

  • Rohde, W., Gramstat, A., Schmitz, J., Tacke, E., Prüfer, D., 1994: Plant viruses as model systems for the study of non-canonical translation mechanisms in higher plants. — J. Gen. Virol.75: 2141–2149.

    Google Scholar 

  • Schubert, R., Czihal, A., Wobus, U., BÄumlein, H., 1994: A putative seed globulin pseudogene from oat (Avena sativa L.). — Biol. Zentralbl.113: 107–112.

    Google Scholar 

  • Shewry, P. R., Miles, M. J., Tatham, A. S., 1994: The prolamin storage proteins of wheat and related cereals. — Prog. Biophys. Molec. Biol.61: 37–59.

    Google Scholar 

  • Smith, G. P., 1973: Unequal crossover and the evolution of multigene families. — In: Chromosome structure and function. Cold Spring Harbor Symposia on Quantitative Biology38: 507–513.

    Google Scholar 

  • Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E., Inouye, M., 1966: Frameshift mutations and the genetic code. — In: The genetic code. Cold Spring Harbor Symposia on Quantitative Biology31: 77–84.

    Google Scholar 

  • Sumner-Smith, M., Rafalski, J. A., Sugiyama, T., Stoll, M., Soll, D., 1985: Conservation and variability of wheatα/β-gliadin genes. — Nucl. Acids Res.13: 3905–3916.

    Google Scholar 

  • Takaiwa, F., Oono, K., 1991: Genomic DNA sequences of two new genes for new storage protein glutelin in rice. — Jap. J. Genet66: 161–171.

    Google Scholar 

  • —, 1991: Sequence of three members and expression of a new major subfamily of glutelin genes from rice. — Pl. Molec. Biol.17: 875–885.

    Google Scholar 

  • Thomas, M. S., Flavell, R. B., 1990: Indentification of an enhancer element for endosperm-specific expression of high molecular weight glutenin. — Pl. Cell2: 1171–1180.

    Google Scholar 

  • Vallejo, A. N., Pease, L. R., 1995: Structure of the MHC A and B locus promoters in hominoids: insights on the evolution of the class 1 MHC multigene family. — J. Immunol.154: 3912–3921.

    Google Scholar 

  • Viotti, A., Cairo, G., Vitale, A., Sala, E., 1985: Each zein gene class can produce polypeptides of different sizes. — EMBO J.4: 1103–1110.

    Google Scholar 

  • Weiher, H., König, M., Gruss, P., 1983: Multiple point mutations affecting the Simian virus 40 enhancer. — Science219: 626–631.

    Google Scholar 

  • Wierdl, M., Green, C. N., Datta, A., Jinks-Robertson, S., Petes, T. D., 1966: Destabilization of simple repetitive DNA sequences by transcription in yeast. — Genetics143: 713–721.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, B.C., Appels, R. Sequence variation at theSec-1 locus of rye,Secale cereale (Poaceae). Pl Syst Evol 214, 1–14 (1999). https://doi.org/10.1007/BF00985728

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00985728

Key words

Navigation