Skip to main content
Log in

The canola microspore-derived embryo as a model system to study developmental processes in plants

  • Review
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The ability of microspores to undergo embryo development after a successful induction treatment provides a unique experimental system to study a variety of developmental processes in plants. Recent published results focus on the cellular and molecular aspects of the early induction process. In this review, besides summarizing the current findings, the advantages of using the MDE system to study other aspects of embryo development are emphasized. The continual improvement of culturing procedures, media components, and molecular methods guarantees exciting new findings in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

MDE:

microspore-derived embryo

PEG:

polyethylene glycol

HSP:

heat shock protein

PPB:

preprophase band

SAM:

shoot apical meristem

TIBA:

tri-iodobenzoic acid

Literature Cited

  • Attree SM, Fowke LC (1993) Somatic embryogenesis and synthetic seeds of conifers. Plant Cell Tiss Org Cult35: 1–35

    Article  CAS  Google Scholar 

  • Barinova I, Zhexembekova M, Barsova E, Lukyanov S Heberle-Bors E, Touraev A (2002)Antirrhinum majus microspore maturation and transient transformation in vitro. J Exp Bot53: 1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Binarova P, Straatman K, Hause B, Van Lammeren AAM (1993) Nuclear DNA synthesis during the induction of embryogenesis in cultured microspores and pollen ofBrassica napus L. Theoret App Gen87: 9–16

    CAS  Google Scholar 

  • Bonet FJ, Azbaid L, Olmedilla A (1998) Pollen embryogenesis: atavism or totipotency? Protoplasma202:115–121

    Article  Google Scholar 

  • Boutilier KA, Gines M-J, DeMoor JM, Huang B, Baszczynski CL, Iyer VN, Miki BL (1994) Expression of the Bnm- NAP subfamily of napin genes coincides with the induction ofBrassica microspore embryogenesis. Plant MolBiol26: 1711–1723

    CAS  Google Scholar 

  • Carlson AR, Letarte J, Chen J, Kasha KJ (2001) Visual screening of microspore-derived transgenic barley (Hordeum vulgare L.) with green-fluorescent protein. Plant Cell Rep20: 331–337

    Article  CAS  Google Scholar 

  • Castillo AM, Cistue L, Valles MO, Sanz JM, Romagosa I, Molina-Cano JL (2001) Efficient production of androgenic doubled-haploid mutants in barley by the application of sodium azide to anther and microspore culture. Plant Cell Rep20: 105–111

    Article  CAS  Google Scholar 

  • Chan J, Pauls KP (2001) Small G proteins fromBrassica napus, potential involvement in embryogenesis in microspore cultures,In The Fifth Plant Tissue Culture and Genetic Engineering Workshop held at Saskatoon, Saskatchewan, Canada, May 12–15, p 36

  • Chen JCF, Tsai CCY, Tzen JTC (1999) Cloning and secondary structure analysis of caleosin, a unique calciumbinding protein in oil bodies of plant seeds. Plant Cell Physiol40: 1079–1086

    PubMed  CAS  Google Scholar 

  • Child RD, Chauvaux N, John K, Ulvskov P Van Onckelen HA (1998) Ethylene biosynthesis in oilseed rape pods in relation to pod shatter. J Exp Bot49: 829–838

    Article  CAS  Google Scholar 

  • Colebatch G, Trevaskis B, Udvardi M (2002) Functional genomics: tools of the trade. New Phytol153: 27–36

    Article  CAS  Google Scholar 

  • Cordewener J, Bergervoet J, Liu C-M (2000) Changes in protein synthesis and phosphorylation during microspore embryogenesis inBrassica napus. J Plant Physiol156: 156–163

    CAS  Google Scholar 

  • Cordewener JHG, Busink R, Traas JA, Custers JBM, Dons HJM, Van Lookeren Campagne MM (1994) Induction of microspore embryogenesis inBrassica napus L. tis accompanied by specific changes in protein synthesis. Planta195:50–56

    Article  CAS  Google Scholar 

  • Cordewener JHG, Hause G, Gorgen E, Busink R, Hause B,Dons HJM, Van Lammeren MM, Van Lookeren Campagne MM, Pechan P (1995) Changes in synthesis and localization of members of the 70-kDa class of heatshock proteins accompany the induction of embryogenesis inBrassica napus L. microspores. Planta196: 747-755

    Google Scholar 

  • Custers JBM, Cirdewener JHG, Fiers MA, Maassen BTH, van Lookeren Campagne MM, Liu CM (2001) Androgenesis inBrassica, In SS Bhojwani, WY Soh, eds, Current trends in the embryology of angiosperms, Kluwer Academic Publishers, Dordrecht, pp 451–470

    Google Scholar 

  • Datta SK (2001) Androgenesis in cereals,In SS Bhojwani, WY Soh, eds, Current trends in the embryology of angiosperms, Kluwer Academic Publishers, Dordrecht, pp 471–488

    Google Scholar 

  • Delseny M, Raynal M (1999) Globulin storage proteins in crucifers and non-legume dicotyledonous families,In PR Shewry, R Casey, eds, Seed proteins, Kluwer Academic Publishers, Dordrecht, pp 427–451

    Google Scholar 

  • Fennell A, Hauptmann R (1992) Electroporation and PEG delivery of DNA into maize microspores. Plant Cell Rep11: 567–570

    Article  CAS  Google Scholar 

  • Ferrie AMR, Keller WA (1995) Microspore culture for haploid plant production,In OL Gamborg, GC Phillips, eds, Plant cell, tissue and organ culture: fundamental methods, Springer, Berlin, pp155–164

    Google Scholar 

  • Ferrie AMR, Palmer CE, Keller WA (1995) Haploid embryogenesis,In TA Thorpe, ed, In vitro embryogenesis in plants, Kluwer Academic Publishers, Dordrecht, pp 309–344

    Google Scholar 

  • Fischer-Iglesias C, Neuhaus G (2001) Zygotic embryogenesis,In SS Bhojwani, WY Soh, eds, Current trends in the embryology of angiosperms, Kluwer Academic Publishers, Dordrecht, pp 223–247

    Google Scholar 

  • Frandsen GI, Mundy J, Tzen JTC (2001) Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant112: 301–307

    Article  PubMed  CAS  Google Scholar 

  • Gaestel M (2002) sHsp-phosphorylation: enzymes, signaling pathways and functional implications. Prog Mol Subcell Biol28: 151–169

    PubMed  CAS  Google Scholar 

  • Garrido D, Eller N, Heberle-Bors, Vicente O (1993) De novo transcription of specific mRNAs during the induction of tobacco pollen embryogenesis. Sex Plant Reprod6: 40–45

    Article  Google Scholar 

  • Gervais C, Simmonds DH, Newcomb W (1994) Actin microfilament organization during pollen development ofBrassica napus cv. Topas. Protoplasma183: 67–76

    Article  Google Scholar 

  • Guha S, Maheshwari SC (1964)In vitro production of embryos from anthers ofDatura. Nature204: 497

    Article  Google Scholar 

  • Guha S, Maheshwari SC (1966) Cell division and differentiation of embryo in the pollen grains of Daturain vitro. Nature212: 97–98

    Article  Google Scholar 

  • Guo YD, Pulli S (2000) An efficient androgenic embryogenesis and plant regeneration method through isolated microspore culture in timothy (Phleum pratense L.). Plant Cell Rep19: 761–767

    Article  CAS  Google Scholar 

  • Harada JJ (2001) Role ofArabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol158: 405–409

    Article  CAS  Google Scholar 

  • Harada JJ, Kwong RW, Lee H-S, Stone SL, Kwong L, Pelletier J, Yee KM, Fischer RL, Goldberg RB (2002) Control of embryo development in higher plants, Abstract from the 10th International Association for Plant Tissue Culture & Biotechnology, p 12–A

  • Hause B, Hause G, Pechan P, Van Lammeren AAM (1993) Cytoskeletal changes and induction of embryogenesis in microspore and pollen cultures ofBrassica napus L. Cell Biol lnt Rep17: 153–168

    Article  Google Scholar 

  • Hause B, Van Veenendaal WLH, Hause G, Van Lammeren AAM (1994) Expression of polarity during early development of microspore-derived and zygotic embryos ofBrassica napus L. cv. Topas. Bot Acta107: 407–415

    Google Scholar 

  • Hause G, Cordewener JHG, Ehrmanova M, Hause B, Binarova P, Van Lookeren Campagne MM, Van Lammeren AAM (1995) Cell cycle dependent distribution of phosphorylated proteins in microspores and pollen ofBrassica napus L., detected by the monoclonal antibody MPM-2. Protoplasma187: 117–126

    Article  CAS  Google Scholar 

  • Hause G, Hause B Van Lammeren AAM (1992) Microtubular and actin filament configurations during microspore and pollen development inBrassica napus cv. Topas. Can J Bot70: 1369–1376

    Google Scholar 

  • Hays DB, Yeung EC, Pharis RP (2002) The role of gibberellins in embryo axis development. J Exp Bot53: 1747–1751

    Article  PubMed  CAS  Google Scholar 

  • Hays DB, Reid DM, Yeung EC, Pharis RP (2000) Role of ethylene in cotyledon development of microspore- derived embryos ofBrassica napus. J Exp Bot51: 1851–1859

    Article  PubMed  CAS  Google Scholar 

  • Hofer M, Touraev A, Heberle-Bors E (1999) Induction of embryogenesis from isolated apple microspores. Plant Cell Rep18: 1012–1017

    Article  CAS  Google Scholar 

  • Höglund AS, Rödin J, Larsson E, Rask L (1992) Distribution of napin and cruciferin in developing rape seed embryos Plant Physiol98: 509–515

    Article  PubMed  Google Scholar 

  • Holbrook LA, Magus JR, Taylor DC (1992) Abscisic acid induction of elongase activity, biosynthesis and accumulation of very long chain monounsaturated fatty acids and oil body proteins in microspore-derived embryos ofBrassica napus L. cv Reston. Plant Sci84: 99–115

    Article  CAS  Google Scholar 

  • Holbrook LA, van Rooijen GJH, Wilen RW, Moloney MM (1991) Oilbody proteins in microspore-derived embryos ofBrassica napus. Plant Physiol97: 1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Hollenbeck P (2001) Cytoskeleton: microtubules get the signal. Curr Biol11: 820–823

    Article  Google Scholar 

  • Hu T, Kasha KJ (1997) Improvement of isolated microspore culture of wheat (Triticum aestivum L.) through ovary co-culture. Plant Cell Rep16: 520–525

    Article  CAS  Google Scholar 

  • Hu T, Kasha KJ (1999) A cytological study of pretreatments used to improve isolated microspore culture of wheat(Triticum aestivum L.) cv. Chris. Genome42: 432–441

    Article  Google Scholar 

  • Huang B (1992) Genetic manipulation of microspores and microspore-derived embryos. In Vitro Cell Dev Biol28P: 53–58

    CAS  Google Scholar 

  • Ilic-Grubor K, Attree SM, Fowke LC (1998a) Induction of microspore-derived embryos ofBrassica napus L. with polyethylene glycol (PEG) as osmoticum in a low sucrose medium. Plant Cell Rep17: 329–333

    Article  CAS  Google Scholar 

  • Ilic-Grubor K, Attree SM, Fowke LC (1998b) Comparative morphological study of zygotic and microspore-derived embryos ofBrassica napus L. as revealed by scanning electron microscopy. Ann Bot82: 157–165

    Article  Google Scholar 

  • Indrianto A, Barinova I, Touraev A, Heberle-Bors E (2001) Tracking individual wheat microspores in vitro: identification of embryogenic microspores and body axis formation in the embryo. Planta212: 163–174

    Article  PubMed  CAS  Google Scholar 

  • Indrianto A, Heberle-Bors E, Touraev A (1999) Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores. Plant Sci143: 71–79

    Article  CAS  Google Scholar 

  • Iwanowska A, Kieft H, van Lammeren AAM (1997) Morphological and cytological changes in microspore-derived embryos ofBrassica napus L. cv. Topas cultured in the presence of TIBA. Bull Polish Acad Sci Biol Sci45:187–194

    Google Scholar 

  • Jain SM, Sopory SK, Veilleux RE,eds (1996-1997) In vitro haploid production in higher plants, Vols 1-5. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Johnson-Flanagan AM, Spencer MS (1994) Ethylene production during development of mustard(Brassica juncea) and canola(Brassica napus) seed. Plant Physiol106: 601–606

    PubMed  CAS  Google Scholar 

  • Jones-Villeneuve E, Huang B, Prudhomme I, Bird S, Kemble R, Hattori J, Miki B (1995) Assessment of micro-injection for introducing DNA into uninuclear microspores of rapeseed. Plant Cell Tissue Organ Cult40: 97–100

    Article  Google Scholar 

  • Kasha KJ, Simion E, Oro R, Yao QA, Hu TC, Carlson AR (2001) An improved in vitro technique for isolated microspore culture of barley. Euphytica120: 379–385

    Article  Google Scholar 

  • Knox LP, Linstead PJ, Peart J, Cooper C, Roberts K (1991) Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J1: 317–326

    Google Scholar 

  • Kott L, Wong R, Swanson E, Chen L (1996) Mutation and selection for improved oil and meal quality inBrassica napus utilizing microspore culture,In S Mohan Jain, SK Sopory, RE Veilleux, eds, In vitro haploid production in higher plants, Vol 2. Kluwer Academic Publishers, Dordrecht, pp 151–167

    Google Scholar 

  • Kuhlmann U, Foroughi-Wehr B, Graner A, Wenzel G (1991) Improved culture system for microspores of barley to become a target for DNA uptake. Plant Breed107: 165–168

    Article  Google Scholar 

  • Kunz C, Islam SMS, Berberat J, Peter SO, Buter B, Stamp P, Schmid JE (2000) Assessment and improvement of wheat microspore derived embryo induction and regeneration. J Plant Physiol156: 190–196

    CAS  Google Scholar 

  • Kyo M, Miyatake H, Mamezuka K, Amagata K (2000) Cloning of cDNA encoding NtEPc, a marker protein for the embryogenic dedifferentiation of immature tobacco pollen grains cultured in vitro. Plant Cell Physiol41: 129–137

    PubMed  CAS  Google Scholar 

  • Li H, Devaux P (2001) Enhancement of microspore culture efficiency of recalcitrant barley genotypes. Plant Cell Rep20: 475–481

    Article  CAS  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollenof Brassica napus. Z Pflanzenphysiol105: 427–434

    Google Scholar 

  • Liu C-M, Xu Z-H, Chua N-H (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell5: 621–630

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Zheng MY, Konzak CF (2002) Improving green plant production via isolated microspore culture in bread wheat(Triticum aestivum L.). Plant Cell Rep20: 821–824

    Article  CAS  Google Scholar 

  • Ma H (2001) Plant G proteins: the different faces of GPA1. Curr Biol11: 869–871

    Article  Google Scholar 

  • Mascarenhas JP, Crone DE (1996) Pollen and the heat shock response. Sex Plant Reprod9: 370–374

    Article  Google Scholar 

  • Meakin PJ, Roberts JA (1990) Dehiscence of fruit in oil seed rape (Brassica napus L.). J Exp Bot41: 1003–1011

    Article  CAS  Google Scholar 

  • Moloney MM (1999) Seed Oleosins,In PR Shewry, R Casey, eds, Seed proteins, Kluwer Academic Publishers, Dordrecht, pp 781–806

    Google Scholar 

  • Murphy DJ, Cummins I (1989) Biosynthesis of seed storage products during embryogenesis in rapeseed,Brassica napus. J Plant Physiol135: 63–69

    CAS  Google Scholar 

  • Napier JA, Beaudion F, Tatham AS, Alexander LG, Shewry PR (2001) The seed oleosins: structure, properties and biological role. Adv Bot Res35: 111–139

    Article  CAS  Google Scholar 

  • Nitta T, Takahata Y, Kaizuma N (1997) Scanning electron microscopy of microspore embryogenesis inBrassica spp. Plant Cell Rep16: 406–410

    CAS  Google Scholar 

  • Palmer CE, Keller WA, Arnison PG (1996) Utilization ofBrassica haploids,In S Mohan Jain, SK Sopory, RE Veilleux, eds, In vitro haploid production in higher plants, Vol 3. Kluwer Academic Publishers, Dordrecht, pp173–192

    Google Scholar 

  • Pechan PM (1989) Successful cocultivation ofBrassica napus microspores and proembryos withAgrobacterium Plant Cell Rep8: 387–390

    Article  Google Scholar 

  • Pechan PM, Bartels D, Brown DCW, Schell J (1991) Messenger-RNA and protein changes associated with induction ofBrassica microspore embryogenesis. Planta184: 161–165

    Article  CAS  Google Scholar 

  • Pechan PM, Smykal P (2001) Androgenesis: affecting the fate of the male gametophyte. Physiol Plant111: 1–8

    Article  CAS  Google Scholar 

  • Pennell RI, Janniche L, Kjellbom P, Scofield GN, Peart JM, Roberts K (1991) Developmental regulation of a plasma membrane arabinogalactan protein in oilseed rape flowers. Plant Cell3: 1317–1326

    Article  PubMed  CAS  Google Scholar 

  • Pomeroy MK, Kramer JKG, Hunt DJ, Keller WA (1991) Fatty acid changes during development of zygotic and microspore-derived embryos ofBrassica napus. Physiol Plant81: 447–454

    Article  CAS  Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramesar-Fortner N (1999) Physiological control of shoot apical meristem formation inBrassica napus cv Topas. M.Sc. Thesis. The University of Calgary, Calgary

  • Ramesar-Fortner N, Yeung EC (2001) Tri-iodobenzoic acid affects shoot apical meristem formation and function in zygotic embryos ofBrassica napus cv. Topas. Can J Bot79: 265–273

    Article  CAS  Google Scholar 

  • Reynolds TL (2000) Effects of calcium on embryogenic induction and the accumulation of abscisic acid, and an early cysteine-labeled metallothionein gene in androgenic microspores ofTriticum aestivum. Plant Sci150: 201–207

    Article  CAS  Google Scholar 

  • Ritala A, Mannonen L, Oksman-Caldentey KM (2001) Factors affecting the regeneration capacity of isolated barley microspores(Hordeum vulgare L.). Plant Cell Rep20: 403–407

    Article  CAS  Google Scholar 

  • Saini HS (1997) Effects of water stress on male gametophyte development in plants. Sex Plant Reprod10: 67–73

    Article  Google Scholar 

  • Schulze D, Pauls KP (1998) Flow cytometric characterization of embryogenic and gametophytic development inBrassica napus microspore cultures. Plant Cell Physiol39: 226–234

    CAS  Google Scholar 

  • Schulze D, Pauls KP (2002) Flow cytometric analysis of cellulose tracks development of embryogenicBrassica cells in microspore cultures. New Phytol154: 249–254

    Article  Google Scholar 

  • Senger S, Mock HP, Conrad U, Manteuffel (2001) Immunomodulation of ABA function affects early events in somatic embryo development. Plant Cell Rep20: 112–120

    Article  CAS  Google Scholar 

  • Sharma KK, Bhojwani SS (1989) Histoiogical and histochemical investigations of pollen embryos ofBrasica juncea (L.) Czeren. Biol Plant31: 276–279

    Article  Google Scholar 

  • Simmonds DH, Keller WA (1999) Significance of preprophase bands of microtubules in the induction of microspore embryogenesis ofBrassica napus. Planta208: 383–391

    Article  CAS  Google Scholar 

  • Smykal P (2000) Pollen embryogenesis - the stress mediated switch from gametophytic to sporophytic development Current status and future prospects. Biol Plant43: 481–489

    Article  CAS  Google Scholar 

  • Smykal P, Hrdy I, Pechan PM (2000) High-molecular-mass complexes formed in vivo contain smHSPs and HSP70 and display chaperone-like activity. Eur J Biochem267: 2195–2207

    Article  PubMed  CAS  Google Scholar 

  • Smykal P, Pechan PM (2000) Stress, as assessed by the appearance of sHsp transcripts, is required but not sufficient to initiate androgenesis. Physiol Plant110: 135–143

    Article  CAS  Google Scholar 

  • Souter M, Lindsey K (2000) Polarity and signally in plant embryogenesis. J Exp Bot51: 971–983

    Article  PubMed  CAS  Google Scholar 

  • Souter M, Lindsey K (2001) Orchestrating morphogenesis: the importance of signaling in embryogenesis. Phytomorphology Golden Jubilee Issue, 305–325

  • Sung DY, Kaplan F, Guy CL (2001) Plant Hsp70 molecular chaperones: protein structure, gene family, expression and function. Physiol Plant113: 443–451

    Article  CAS  Google Scholar 

  • Taylor DC, Weber N (1994) Microspore-derived embryos of the Brassicaceae - model system for studies of storage lipid bioassembly and its regulation. Fat Sci Technol96: 228–235

    CAS  Google Scholar 

  • Taylor DC, Weber N, Barton DL, Underhill EW, Hogge LR Weselake RJ, Pomeroy MK (1991) Triacylglycerol bioassembly in microspore-derived embryos ofBrassica napus L. cv Reston. Plant Physiol97: 65–79

    Article  PubMed  CAS  Google Scholar 

  • Taylor DC, Weber N, Underhill EW, Pomeroy MK, Keller WA, Scowcroft WR, Wilen RW, Moloney MM, Holbrook LA (1990) Storage-protein regulation and lipid accumulation in microspore embryos ofBrassica napus L. Planta181: 18–26

    Article  CAS  Google Scholar 

  • Telmer CA, Newcomb W, Simmond DH (1993) Microspore development inBrassica napus and the effect of high temperature on division in vivo and in vitro. Protoplasma172: 154–165

    Article  Google Scholar 

  • Telmer CA, Newcomb W, Simmond DH (1995) Cellular changes during heat shock induction and embryo development of cultured microsporesof Brassica napus cv. Topas. Protoplasma185: 106–112

    Article  Google Scholar 

  • Telmer CA, Simmond DH, Newcomb W (1992) Determination of developmental stage to obtain high frequencies of embryogenic microspores inBrassica napus. Physiol Plant84: 417–424

    Article  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O (1996) Efficient microspore embryogenesis in wheat(Triticum aestivum L.) induced by starvation at high temperature. Sex Plant Reprod9: 209–215

    Article  Google Scholar 

  • Touraev A, Lezin F, Heberle-Bors E, Vicente O (1995) Maintenance of gametophytic development after symmetrical division in tobacco microspore culture. Sex Plant Reprod8: 70–76

    Article  Google Scholar 

  • Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv Bot Res35: 53–109

    Article  Google Scholar 

  • Tykarska T (1976) Rape embryogenesis. I. The proembryo development. Acta Soc Bot Pol45: 3–16

    Google Scholar 

  • Tykarska T (1979) Rape embryogenesis. II. Development of embryo proper. Acta Soc Bot Pol48: 391–412

    Google Scholar 

  • Tykarska T (1980) Rape embryogenesis. tIII. Embryo development in time. Acta Soc Bot Pol49: 369–385

    Google Scholar 

  • Tykarska T (1982) Rape embryogenesis. IV. Appearance and disappearance of starch during embryo development. Acta Soc Bot Pol51: 381–387

    CAS  Google Scholar 

  • Tykarska T (1987) Rape embryogenesis. V. Accumulation of lipid bodies. Acta Soc Bot Pol56: 573–584

    CAS  Google Scholar 

  • Van Rooijen GJH, Wilen RW, Holbrook LA, Moloney MM (1992) Regulation of accumulation of mRNAs encoding a 20-kDa oil-body protein in microspore-derived embryos ofBrassica napus. Can J Bot70: 503–508

    Article  Google Scholar 

  • Vrinten PL, Nakamura T, Kasha KJ (1999) Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare L.). Plant Mol Biol41: 455–463

    Article  PubMed  CAS  Google Scholar 

  • Vroemen C, de Vries CS, Quatrano R (1999) Signaling in plant embryos during the establishment of the polar axis. Sem Cell Devel Biol10: 157–164

    Article  CAS  Google Scholar 

  • Wei ZM, Kyo M, Harada H (1986) Callus formation and plant regeneration through direct culture of isolated pollen ofHordeum vulgare cv Sabarlis. Theor Appl Genet72: 252–255

    Article  Google Scholar 

  • Wilberg E, Rahlen L, Hellman M, Tillberg E, Glimelius K, Stymne S (1991) The microspore-derived embryo ofBrassica napus L. as a tool for study embryo-specific lipid biogenesis and regulation of oil quality. Theoret Appl Genet82: 515–520

    Article  Google Scholar 

  • Xu N, Coulter KM, Bewley JD (1990) Abscisic acid and osmoticum prevent germination of developing alfalfa embryos, but only osmoticum maintains the synthesis of developmental proteins. Planta182: 382–390

    Article  CAS  Google Scholar 

  • Yao QA, Simion E, William M, Krochko J, Kasha KJ (1997) Biolistic transformation of haploid isolated microspores of barley (Hordeum vulgare L.). Genome40: 570–581

    Article  PubMed  Google Scholar 

  • Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis,In TA Thorpe, ed, In vitro embryogenesis in plants, Kluwer Academic Publishers, Dordrecht, pp 205–247

    Google Scholar 

  • Yeung EC, Brown DCW (1982) The osmotic environment of developing embryos ofPhaseolus vulgaris. Z Pflanzenphysiol 106: 149-156

    Google Scholar 

  • Yeung EC, Meinke DM, Nickle TC (2001) Embryology of flowering plants-an overview. Phytomorphology Golden Jubilee Issue, pp 289–304

  • Yeung EC, Rahman MH, Thorpe TA (1996) Comparative development of zygotic and microspore-derived embryos inBrassica napus L. cv. Topas. I. Histodifferentiation. Int J Plant Sci157: 27–39

    Article  Google Scholar 

  • Yeung EC, Stasolla C (2000) Somatic embryogenesis - apical meristems and embryo conversion. Korean J Plant Tiss Cult27: 299–307

    Google Scholar 

  • Yoon SJ, Sohn SH, Lee KW (1993) Morphology and protein pattern during microspore-derived embryogenesis ofBrassica napus. Korean J Bot36: 399–406

    CAS  Google Scholar 

  • Zaki MAM, Dickinson HG (1990) Structural changes during the first divisions of embryos resulting from anther and free microspore culture inBrassica napus. Protoplasma156: 149–162

    Article  Google Scholar 

  • Zaki MAM, Dickinson HG (1991) Microspore-derived embryos inBrassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sex Plant Reprod4: 48–55

    Article  Google Scholar 

  • Zaki MAM, Dickinson HG (1995) Modification of cell development in vitro: the effect of colchicines on anther and isolated microspore culture inBrassica napus. Plant Cell Tiss Org Cult40: 255–270

    Article  CAS  Google Scholar 

  • Zhao J, Simmonds DH (1996a) Induction of embryogenesis with colchicines instead of heat in microspores ofBrassica napus L. cv. Topas. Planta198: 433–439

    Article  CAS  Google Scholar 

  • Zhao J, Simmonds DH (1996b) High frequency production of doubled haploid plants ofBrassica napus cv. Topas derived from colchicines-induced microspore embryogenesis without heat shock. Plant Cell Rep15: 668–671

    Article  CAS  Google Scholar 

  • Zheng MY, Liu W, Weng Y, Polie E, Konzak CF (2001) Culture of freshly isolated wheat (Triticum aestivum L.) microspores treated with inducer chemicals. Plant Cell Rep20: 685–690

    Article  CAS  Google Scholar 

  • Zheng MY, Weng Y, Liu W, Konzak CF (2002) The effect of ovary-conditioned medium on microspore embryogenesis in common wheat(Triticum aestivum L.). Plant Cell Rep20: 802–807

    Article  CAS  Google Scholar 

  • Zou J, Abrams GD, Barton DL, Taylor DC, Pomeroy MK, Abrams, SR (1995) Induction of lipid and oleosin biosynthesis by (+)-abscisic acid and its metabolites in microspore-derived embryos ofBrassica napus L. cv Reston. Plant Physiol108: 563–571

    PubMed  CAS  Google Scholar 

  • Zuo J, Niu Q-W, Frugis G, Chua N-H (2002) The PGA6 gene promotes vegetative-to-embryogenic transition inArabidopsis. Abstract from the 10th International Association for Plant Tissue Culture & Biotechnology, p 12–A

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Yeung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeung, E.C. The canola microspore-derived embryo as a model system to study developmental processes in plants. J. Plant Biol. 45, 119–133 (2002). https://doi.org/10.1007/BF03030304

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030304

Keywords

Navigation