Skip to main content
Log in

The relationship between growth enhancement andpet expression inEscherichia coli

  • Session 2 Applied Biological Research
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Thepet operon consists of genes coding for enzymes responsible for ethanol production and consists of pyruvate dehydrogenase and alcohol dehydrogenase II from the high-performance ethanologenZymomonas mobilis. This article describes the physiological influence ofpet expression inEscherichia coli B (ATCC 11303) in terms of growth rate and overall concentrations of cell mass and catabolic end products achieved under well-defined cultivation conditions that included constant pH and carbon (energy) limitation. Glucose, mannose, and xylose were used as substrates, because they represent the principal fermentable components of lignocellulosic biomass and because fermentation of these sugars involves different metabolic pathways. Two different types of ethanologenic recombinants were used—a strain in whichpet expression was via a multicopy plasmid (pLOI297) and a chromosomal integrant, strain KO11. Under the condition of sugar substrate limitation, there was no growth enhancement bypet expression with either glucose or mannose. Whereas the host strain produced exclusively lactic acid from glucose and mannose, both recombinants produced mostly ethanol. Both the plasmid-carrying strain and thepet integrant exhibited slower growth compared to the host culture with glucose or mannose as fermentation substrate. With mannose, the plasmid recombinant grew appreciably slower than either the host culture or the recombinant KO11. Use of a magnesium-deficient medium produced different results with glucose since substrate and turbidometric measurements proved to be unreliable in terms of estimating overall biomass levels. At pH 6.3,pet expression improved overall biomass yield; but at pH 7.0, the cell yields exhibited by the plasmid recombinant and the host strain were the same.E. coli B did not grow well on xylose as sole carbon source. With xylose,pet expression increased the growth rate, but had no effect on the overall biomass yield. In comparing our observations with the reports of others, it was concluded that the effect ofpet expression on growth ofE. coli is dependent on several different biochemical, physiological, genetic, and environmental factors, which largely precludes a statement of generality regarding this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knappe, J. (1987), inEscherichia coli and Salmonella typhimurium, vol. 1, Neidhart, F. C., ed., Academic, New York, pp. 151–155.

    Google Scholar 

  2. Tempest, D. W. and Neijssel, O. M. (1987), inEscherichia coli and Salmonella typhimurium, vol. 1, Neidhart, F. C., ed., Academic, New York, pp. 797–806.

    Google Scholar 

  3. Gottschalk, G. (1986), inBacterial Metabolism, 2nd ed., Springer-Verlag, New York, pp. 208–282.

    Google Scholar 

  4. Roos, J. W., McLaughlin, J. K., and Papoutsakis, E. T. (1985),Biotechnol. Bioeng. 27, 681–694.

    Article  CAS  Google Scholar 

  5. Thauer, R. K., Jungermann, K., and Decker, K. (1977),Bacteriol. Rev. 41, 100–180.

    CAS  Google Scholar 

  6. Stouthamer, A. H. (1977), inMicrobial Energetics, 27th Symp. Soc. Gen. Microbiol., Haddock, B. A. and Hamilton, W. A., eds., Cambridge University Press, London, pp. 285–315.

    Google Scholar 

  7. Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F. (1987),Appl. Environ. Microbiol. 53, 2420–2425.

    CAS  Google Scholar 

  8. Ingram, L. O., Conway, T., and Alterthum, F. (1991), United States Patent 5,000,000.

  9. Ingram, L. O., Alterthum, F., Ohta, K., and Beall, D. S. (1990), inDevelopments in Industrial Microbiology, vol. 31, Pierce, G. E., ed., Elsevier Science, New York, pp. 21–30.

    Google Scholar 

  10. Alterthum, F. and Ingram, L. O. (1989),Appl. Environ. Microbiol. 54, 397–404.

    Google Scholar 

  11. Ingram, L. O. (1991), inEnergy from Biomass and Wastes XIV, Klass, D. L., ed.. Institute of Gas Technology, Chicago, IL, pp. 1105–1126.

    Google Scholar 

  12. Neale, A. D., Scopes, R. K., and Kelly, J. M. (1988),Appl. Microbiol. Biotechnol. 29, 162–167.

    CAS  Google Scholar 

  13. Holmes, W. H. (1986), inCurrent Topics in Cellular Regulation, vol. 28, Academic, New York, pp. 69–105.

    Google Scholar 

  14. Nimmo, H. G. (1987), inEscherichia coli and Salmonella, vol. 1, Neidhart, F. C., ed., Academic, New York, pp. 156–169.

    Google Scholar 

  15. Guest, J. R., Cole, S. T., and Jeyaseelan, K. (1981),J. Gen. Microbiol. 127, 65–79.

    CAS  Google Scholar 

  16. Diaz-Ricci, J. C., Tsu, M., and Bailey, J. E. (1992),Biotechnol. Bioeng. 39, 59–65.

    Article  CAS  Google Scholar 

  17. Diaz-Ricci, J. C., Hitzmann, B., and Bailey, J. E. (1991),Biotechnol. Prog. 7, 305–310.

    Article  CAS  Google Scholar 

  18. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 893–900.

    CAS  Google Scholar 

  19. Lawford, H. G. and Rousseau, J. D. (1995),Appl. Biochem. Biotechnol. 51/52, 179–195.

    Article  CAS  Google Scholar 

  20. Grohmann, K., Baldwin, E. A., Buslig, B. S., and Ingram, L. O. (1994),Biotechnol. Lett. 16, 281–286.

    Article  CAS  Google Scholar 

  21. Grohmann, K., Cameron, R. G., and Buslig, B. S. (1995),Appl. Biochem. Biotechnol. 51/52, 423–435.

    Article  CAS  Google Scholar 

  22. Lawford, H. G. and Rousseau, J. D. (1991),Appl. Biochem. Biotechnol. 28/29, 221–236.

    Article  Google Scholar 

  23. Stouthamer, A. H. (1976), inYield Studies in Microorganisms, Meadowfield, Dewbury, UK.

    Google Scholar 

  24. Lawford, H. G. and Rousseau, J. D. (1992),Appl. Biochem. Biotechnol. 34/35, 185–204.

    Article  Google Scholar 

  25. Lawford, H. G. and Rousseau, J. D. (1993),Appl. Biochem. Biotechnol. 39/40, 301–322.

    Article  Google Scholar 

  26. Boyer, H. W. and Rouland-Dussoix, D. J. (1969),J. Mol. Biol. 41, 459–472.

    Article  CAS  Google Scholar 

  27. Lui, G. W. and Strohl, W. R. (1990),Appl. Environ. Microbiol. 56, 1004–1011.

    Google Scholar 

  28. Smirova, G. V. and Oktybr’skii, O. N. (1985),Microbiology (USSR) 54, 205–209.

    Google Scholar 

  29. Smirova, G. V., and Oktybr’skii, O. N. (1985),Microbiology (USSR) 57, 446–451.

    Google Scholar 

  30. Diaz-Ricci, J. C., Regan, L., and Bailey, J. E. (1991),Biotechnol. Bioeng. 38, 1318–1324.

    Article  CAS  Google Scholar 

  31. Lawford, H. G. and Rousseau, J. D. (1996),Appl. Biochem. Biotechnol. 57/58, 307–326.

    CAS  Google Scholar 

  32. Guimaraes, W. V., Dudley, G. L., and Ingram, L. O. (1992),Biotechnol. Bioeng. 40, 41–45.

    Article  CAS  Google Scholar 

  33. Lawford, H. G., and Rousseau, J. D. (1993), inEnergy from Biomass and Wastes XVI, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 559–597.

    Google Scholar 

  34. Lawford, H. G. and Rousseau, J. D. (1993),Biotechnol. Lett. 15, 615–620.

    Article  CAS  Google Scholar 

  35. Barbosa, M. F. S., Beck, M. J., Fein, J. E., Potts, D., and Ingram, L. O. (1992),Appl. Environ. Microbiol. 58, 1382–1384.

    CAS  Google Scholar 

  36. Ohta, K., Alterhum, F., and Ingram, L. O. (1990),Appl. Environ. Microbiol. 56, 463–465.

    CAS  Google Scholar 

  37. Beall, D. S., Ohta, K., and Ingram, L. O. (1991),Biotechnol. Bioeng. 38, 296–303.

    Article  CAS  Google Scholar 

  38. Lawford, H. G. and Rousseau, J. D. (1992), inEnergy from Biomass and Wastes XV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 583–622.

    Google Scholar 

  39. Lawford, H. G. and Rousseau, J. D. (1994),Appl. Biochem. Biotechnol. 45/46, 367–382.

    Google Scholar 

  40. Lawford, H. G. and Rousseau, J. D. (1991),Biotechnol. Lett. 13, 191–196.

    Article  CAS  Google Scholar 

  41. Kracke-Hem, H. A., Rinas, U., Hitzmann, B., and Schügerl, K. (1991),Curr. Microbiol. 23, 71–74.

    Article  Google Scholar 

  42. Yang, X.-M. (1992),J. Biotechnol. 23, 271–389.

    Article  CAS  Google Scholar 

  43. Yee, L. and Blanch, H. W. (1992),Bio/Technol. 10, 1550–1556.

    Article  CAS  Google Scholar 

  44. Yee, L. and Blanch, H. W. (1993),Biotechnol. Bioeng. 41, 221–230.

    Article  CAS  Google Scholar 

  45. Landwall, P. and Holme, T. (1977),J. Gen. Microbiol. 103, 353–358.

    CAS  Google Scholar 

  46. LeVine, S. M., Ardeshir, F., and Ferro-Luzzi Ames, G. (1980),J. Bacteriol. 143, 1081.

    CAS  Google Scholar 

  47. Koh, B. T., Nakashimada, U., Pfeiffer, M., and Yap, M. G. S. (1992),Biotechnol. Lett. 14, 1115–1118.

    Article  CAS  Google Scholar 

  48. Lawford, H. G. and Rousseau, J. D. (1996),Appl. Biochem. Biotechnol. 57/58, 293–305.

    Article  CAS  Google Scholar 

  49. Lawford, H. G. and Rousseau, J. D. (1994),Appl. Biochem. Biotechnol. 45/46, 349–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. The relationship between growth enhancement andpet expression inEscherichia coli . Appl Biochem Biotechnol 57, 277–292 (1996). https://doi.org/10.1007/BF02941708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941708

Index Entries

Navigation