Skip to main content
Log in

Effects of pH and acetic acid on glucose and xylose metabolism by a genetically engineered ethanologenicEscherichia coli

  • Session 3 Applied Biological Research II
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient utilization of the pentosan fraction of hemicellulose from lignocellulosic feedstocks offers an opportunity to increase the yield and to reduce the cost of producing fuel ethanol. The patented, genetically engineered, ethanologenEscherichia coli B (pLOI297) exhibits high-performance characteristics with respect to both yield and productivity in xylose-rich lab media. In addition to producing monomer sugar residues, thermochemical processing of biomass is known to produce substances that are inhibitory to both yeast and bacteria. During prehydrolysis, acetic acid is formed as a consequence of the deacetylation of the acetylated pentosan. Our investigations have shown that the acetic acid content of hemicellulose hydrolysates from a variety of biomass/waste materials was in the range 2–10 g/L (33–166 mM). Increasing the reducing sugar concentration by evaporation did not alter the acetic acid concentration. Acetic acid toxicity is pH dependent. By virtue of its ability to traverse the cell membrane freely, the undissociated (protonated) form of acetic acid (HAc) acts as a membrane protonophore and causes its inhibitory effect by bringing about the acidification of the cytoplasm. With recombinantE. coli B, the pH range for optimal growth with glucose and xylose was 6.4–6.8. With glucose, the pH optimum for ethanol yield and volumetric productivity was 6.5, and for xylose it was 6.0 and 6.5, respectively. However, the decrease in growth and fermentation efficiency at pH 7 is not significant. At pH 7, only 0.56% of acetic acid is undissociated, and at 10 g/L, neither the ethanol yield nor the maximum volumetric productivity, with glucose or xylose, is significantly decreased. The “uncoupling” effect of HAc is more pronounced with xylose and the potency of HAc is potentiated in a minimal salts medium. Controlling the pH at 7 provided an effective means of circumventing acetic acid toxicity without significant loss in fermentation performance of the recombinant biocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wright, J. D. (1988),Chem. Eng. Progress 84, 62–68.

    CAS  Google Scholar 

  2. Wyman, C. E. and Hinman, N. D. (1990),Appl. Biochem. Biotechnol. 24/25, 735–753.

    Google Scholar 

  3. Bull, S. R. (1990),Energy from Biomass & Wastes XIV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 1–14.

    Google Scholar 

  4. Lynd, L. R. (1990),Appl. Biochem. Biotechnol 24/25, 695–719.

    Google Scholar 

  5. Lynd, L. R., Cushman, J. H., Nicholas, R. J., and Wyman, C. E. (1991),Science 251, 1318–1323.

    Article  CAS  Google Scholar 

  6. Grethlein, H. E. (1985),Bio/Technology 3, 155–160.

    Article  CAS  Google Scholar 

  7. Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, J., Torget, R., and Graboski, M. (1984),Biotech. Bioeng. Symp. 14, 139–157.

    Google Scholar 

  8. Kong, F., Engler, C. R., and Soltes, E. (1992),Appl. Biochem. Biotechnol. 34/35, 23–35.

    Google Scholar 

  9. Grethlein, H. E., Allen, D. C., and Converse, A. O. (1984),Biotech. Bioeng. 26, 1498–1505.

    Article  CAS  Google Scholar 

  10. Grohmann, K., Torget, R., and Himmel, M. (1986),Biotechnol. Bioeng. Symp. 17, 135–151.

    CAS  Google Scholar 

  11. Torget, R., Werdene, P., Himmel, M., and Grohmann, K. (1990),Appl. Biochem. Biotechnol. 24/25, 115–126.

    Google Scholar 

  12. Torget, R., Walter, P., Himmel, M., and Grohmann, K. (1991),Appl. Biochem. Biotechnol. 28/29, 75–86.

    Google Scholar 

  13. Stanek, D. A. (1958),Tappi J. 41, 601–609.

    CAS  Google Scholar 

  14. Beck, M. J. (1986),Biotechnol. Bioeng. Symp. 17, 617–627.

    CAS  Google Scholar 

  15. Fein, J. E., Tallim, S. R., and Lawford, G. R. (1984),Can. J. Microbiol. 30, 682–690.

    Article  CAS  Google Scholar 

  16. Frazer, F. R. and McCaskey, T. A. (1989),Biomass 18, 31–42.

    Article  CAS  Google Scholar 

  17. Nishikawa, N. K., Sutcliffe, R., and Saddler, J. N. (1988),Appl. Microbiol. Biotechnol. 27, 549–552.

    CAS  Google Scholar 

  18. Ando, S., Arai, I., Kiyoto, K., and Hanai, S. (1986),J. Ferment. Technol. 64, 567–570.

    Article  CAS  Google Scholar 

  19. Jefferies, T. W. (1981),Biotechnol. Bioeng. Symp. 11, 315–324.

    Google Scholar 

  20. Lynd, L. R. (1989),Adv. Biochem. Eng. Biotechnol. 38, 1–52.

    CAS  Google Scholar 

  21. Skoog, K. and Hahn-Hägerdal, B. (1988),Enzyme Microbiol. Technol. 10, 66–88.

    Article  CAS  Google Scholar 

  22. Prior, B. A., Kilian, S. G., and du Preez, J. C. (1989),Process Biochemistry 24, 21–32.

    CAS  Google Scholar 

  23. Timell, T. E. (1967),Wood Science and Technology 1, 45–70.

    Article  CAS  Google Scholar 

  24. Tran, A. V. and Chambers, R. P. (1986),Enzyme Microbiol. Technol. 8, 439–444.

    Article  CAS  Google Scholar 

  25. Parekh, S. R., Parekh, R. S., and Wayman, M. (1987),Process Biochemistry 22, 85–91.

    CAS  Google Scholar 

  26. du Preez, J. C., Bosch, M. and Prior, B. A. (1986),Enzyme Microb. Technol. 8, 360–364.

    Article  Google Scholar 

  27. Lee, Y. Y. and McCaskey, T. A. (1983),Tappi J. 66, 102–107.

    CAS  Google Scholar 

  28. van Zyl, C., Prior, B. A., and du Preez, J. C. (1988),Appl. Biochem. Biotechnol. 17, 357–369.

    Article  Google Scholar 

  29. Wilson, J. J., Nishikawa, N. N., Deschatelets, L., and Nguyen, Q. (1990), Vol. I and II. Final Report of DSS Contract File #051SZ.23283-8-6103. Alternative Energy Division; Energy, Mines and Resources Canada, Ottawa.

    Google Scholar 

  30. Björling, T. and Lindman, B. (1989),Enzyme Microbiol. Technol. 11, 240–246.

    Article  Google Scholar 

  31. Ingram, L. O., Alterthum, F., Ohta, K., and Beall, D. S. (1990), inDevelopments in Industrial Microbiology, Pierce, G. E., ed., vol. 31, Elsevier, New York, pp. 21–30.

    Google Scholar 

  32. Ingram, L. O., Conway, T., and Alterthum, F. (1991), United States Patent 5,000,000.

  33. Ingram, L. O. and Conway, T. (1988),Appl. Environ. Microbiol. 54, 397–404.

    CAS  Google Scholar 

  34. Alterthum, F. and Ingram, L. O. (1989),Appl. Environ. Microbiol. 55, 1943–1948.

    CAS  Google Scholar 

  35. Ingram, L. O., (1990), inEnergy from Biomass & Wastes XIV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 1105–1126.

    Google Scholar 

  36. Ohta, K., Alterthum, F., and Ingram, L. O. (1990),Appl. Environ. Microbiol. 56, 463–465.

    CAS  Google Scholar 

  37. Lawford, H. G. and Rousseau, J. D. (1991),Appl. Biochem. Biotechnol. 28/29, 221–236.

    Google Scholar 

  38. Lawford, H. G. and Rousseau, J. D. (1991), inEnergy from Biomass & Wastes XV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 583–622.

    Google Scholar 

  39. Lawford, H. G. and Rousseau, J. D. (1991),Biotechnol. Letts. 13, 191–196.

    Article  CAS  Google Scholar 

  40. Lawford, H. G. and Rousseau, J. D. (1992),Appl. Biochem. Biotechnol. 34/35, 185–204.

    Article  Google Scholar 

  41. Lawford, H. G. and Rousseau, J. D. (1992), inEnergy from Biomass & Wastes XVI, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL (in press).

    Google Scholar 

  42. Lawford, H. G. and Rousseau, J. D. (1993),Appl. Biochem. Biotechnol., this vol.

  43. Lawford, H. G. and Rousseau, J. D. (1992),Biotechnol. Letts. 14, 421–426.

    Article  CAS  Google Scholar 

  44. Zabriskie, D. W. and Arcuri, E. J. (1986),Enzyme Microb. Technol. 8, 706–717.

    Article  CAS  Google Scholar 

  45. Luria, S. E. and Delbruck, M. (1943),Genetics 28, 491–511.

    CAS  Google Scholar 

  46. Nicholls, D. G. (1982),Bioenergetics—an Introduction to the Chemiosmotic Theory, Academic, Toronto, pp. 56–58.

    Google Scholar 

  47. Postma, E., Verduyn, C., Scheffers, W. A., and van Dijken, J. P. (1989),Appl. Environ. Microbiol. 55, 468–477.

    CAS  Google Scholar 

  48. Pampulha, M. E. and Louriero, V. (1989),Biotechnol. Letts. 11, 269–274.

    Article  CAS  Google Scholar 

  49. Verduyn, C., Postma, E., Scheffers, A., and van Dijken, J. P. (1990),J. Gen. Microbiol. 136, 395–403.

    CAS  Google Scholar 

  50. Repaske, D. R. and Adler, J. (1981),J. Bacteriol. 145, 321–325.

    Google Scholar 

  51. Conway, E. J. and Downey, M. (1950),Biochem. J. 47, 347.

    CAS  Google Scholar 

  52. Mitchell, P. (1973),J. Bioenergetics 4, 63–91.

    Article  CAS  Google Scholar 

  53. Padan, E. D., Zilberstein, D., and Schuldiner, S. (1982),Biochim. Biophys. Acta. 650, 131–156.

    Google Scholar 

  54. Booth, I. R. (1985),Microbiol. Rev. 49, 359–378.

    CAS  Google Scholar 

  55. Verduyn, C., Postma, E., Scheffers, A., and van Dijken, J. P. (1990),J. Gen. Microbiol. 136, 405–412.

    CAS  Google Scholar 

  56. Pampulha, M. E. and Loureiro-Dias, M. C. (1989),Appl. Microbiol. Biotechnol. 31, 547–550.

    Article  CAS  Google Scholar 

  57. Padan, E., Zilberstein, D., and Schuldiner, S. (1981),Biochim. Biophys. Acta 650, 131–156.

    Google Scholar 

  58. Salmond, C. V., Kroll, R. G., and Booth, I. R. (1984),J. Gen. Microbiol. 130, 2845–2850.

    CAS  Google Scholar 

  59. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989),Appl. Biochem. Biotechnol. 20/21, 391–401.

    Google Scholar 

  60. Beall, D. S., Ohta, K., and Ingram, L. O. (1991),Biotechnol. Bioeng. 38, 296–303.

    Article  CAS  Google Scholar 

  61. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugan, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 893–900.

    CAS  Google Scholar 

  62. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugan, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 2810–2815.

    CAS  Google Scholar 

  63. Barbosa, M., de F. S., Beck, M. J., Fein, J. E., Potts, D., and Ingram, L. O. (1992),Appl. Environ. Microbiol. 58, 1382–1384.

    CAS  Google Scholar 

  64. Safi, B. F., Rouleau, D., Mayer, R. C., and Desrochers, M. (1986),Biotechnol. Bioeng. 28, 944–951.

    Article  CAS  Google Scholar 

  65. Mueller, J. C. (1970),Pulp and Paper Magazine Canada 72, 72–76.

    Google Scholar 

  66. Luli, G. W. and Strohl, W. R. (1990),Appl. Environ. Microbiol. 56, 1004–1011.

    CAS  Google Scholar 

  67. Booth, I. R. and Kroll, R. G. (1983),Biochem. Soc. Trans. 11, 70–73.

    CAS  Google Scholar 

  68. Smirnova, G. V. and Oktybr'skii, O. N. (1985),Microbiology (USSR) 54, 205–209.

    Google Scholar 

  69. Smirnova, G. V. and Oktyabr'skii, O. N. (1988),Microbiology (USSR) 57, 446–451.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. Effects of pH and acetic acid on glucose and xylose metabolism by a genetically engineered ethanologenicEscherichia coli . Appl Biochem Biotechnol 39, 301–322 (1993). https://doi.org/10.1007/BF02918999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918999

Index Entries

Navigation