Skip to main content
Log in

What is the role of thermodynamics on protein stability?

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The most challenging and emerging field of biotechnology is the tailoring of proteins to attain the desired characteristic properties. In order to increase the stability of proteins and to study the function of proteins, the mechanism by which proteins fold and unfold should be known. It has been debated for a long time how exactly the linear form of a protein is converted into a stable 3-dimensional structure. The literature showed that many theories support the fact that protein folding is a thermodynamically controlled process. It is also possible to predict the mechanism of protein deactivation and stability to an extent from thermodynamic studies. This article reviewed various theories that have been proposed to explain the process of protein folding after its biosynthesis in ribosomes. The theories of the determination of the thermodynamic properties and the interpretation of thermodynamic data of protein stability are also discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Stockar, Urs. and A. M. L. van der Wielen (1997) Thermodynamics in biochemical engineering.J. Biotechnol. 59: 25–27.

    Article  Google Scholar 

  2. Maddox, J. (1994) The genetic code by numbers.Nature 367: 111.

    Article  CAS  Google Scholar 

  3. Alberti, S. (1997) The origin of genetic code and protein synthesis.J. Mol. Evol. 45: 352–358.

    Article  CAS  Google Scholar 

  4. Crick, F. H. C. (1968) The origin of genetic code.J. Mol. Biol. 38: 367–369.

    Article  CAS  Google Scholar 

  5. Alberti, S. (1999) Evolution of genetic code, protein synthesis and nucleic acid replication.Cell. Mol. Life Sci. 56: 85–93.

    Article  CAS  Google Scholar 

  6. Cech, T. R. and B. L. Bass (1988) RNA as an RNA polymerase: net elongation of an RNA primer catalysed by the tetrehymena ribozyme.Science 239: 1412–11416.

    Article  Google Scholar 

  7. Soto, C. (2001) Protein misfolding and disease; protein refolding and therapy.FEBS Lett. 498: 204–207.

    Article  CAS  Google Scholar 

  8. Ferreira, S. T. and F. G. de Felice (2001) Protein dynamics, folding and misfolding: from basic physical chemistry to human conformational diseases.FEBS Lett. 498: 129–134.

    Article  CAS  Google Scholar 

  9. Sadana, A. (1995)Biocatalysis: Fundamentals of Deactivation Kinetics. Prentice Hall, New Jersey, USA.

    Google Scholar 

  10. Srinivas, R. and T. Panda (1999) Enhancing the feasibility of many biotechnological processes through enzyme deactivation studies.Bioproc. Eng. 21: 363–369.

    Article  CAS  Google Scholar 

  11. Yon, J. M. (1997) Protein folding: concepts and perspectives.Cell. Mol. Life Sci. 53: 557–567.

    Article  CAS  Google Scholar 

  12. Ptitsyn, O. B. (1991) How does protein synthesis give rise to the 3D-structure?FEBS Lett. 285: 176–181.

    Article  CAS  Google Scholar 

  13. Anfinsen, C. B., E. Haber, M. Sela, and F. H. White (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain.Proc. Natl. Acad. Sci. USA 47: 1309–1314.

    Article  CAS  Google Scholar 

  14. Ricard, J., B. Gontero, L. Avilan, and S. Lebreton (1998) Enzymes and the supramolecular organization of the living cell. Information transfer within supram olecular edifices and imprinting effects.Cell. Mol. Life Sci. 54: 1231–1248.

    Article  CAS  Google Scholar 

  15. Martin, J., T. Langer, R. Boteva, A. Schramel, A. L. Horwich, and F. U. Hartl (1991) Chaperonin-mediated protein folding at the surface of GroEl through a ‘molten globule’ like intermediate.Nature 352: 36–42.

    Article  CAS  Google Scholar 

  16. Ellis, R. J. and S. M. Hemmingsen (1989) Molecular chaperones: proteins essential for the biogenesis of some macramolecular structures.Trends Biochem. Sci. 14: 339–342.

    Article  CAS  Google Scholar 

  17. Ellis, R. J. (1991) Molecular chaperones.Annu. Rev. Biochem. 60: 321–347.

    Article  CAS  Google Scholar 

  18. Deshaies, R. J., B. D. Koch, M. Werner-Washburne, E. A. Craig, and R. Schekman (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides.Nature 332: 800–805.

    Article  CAS  Google Scholar 

  19. Spear, E. and D. T. Ng (2001) The unfolded protein response: no longer just a special teams player.Traffic 2: 515–523.

    Article  CAS  Google Scholar 

  20. Sonenberg, N. and C. B. Newgard (2001) Protein synthesis. The perks of balancing glucose.Science 293: 818–819.

    Article  CAS  Google Scholar 

  21. Rizzitello, A. E., J. R. Harper, and T. J. Silhavy (2001) Genetic evidence for parallel pathways of chaperone activity in the periplasm ofEscherichia coli.J. Bacteriol. 183: 6794–6800.

    Article  CAS  Google Scholar 

  22. Lang, Y., J. Li, J. Chen, and C. C. Wang (2001) Thermodynamics of the folding of D-glyceraldehyde-3-phosphate dehydrogenase assisted by protein disulfide isomerase studied by microcalorimetry.Eur. J. Biochem. 268: 4183–4189.

    Article  Google Scholar 

  23. Kasper, P., P. Christen, and H. Gehring (2000) Empirical calculation of the relative free energies of peptide binding to the molecular chaperone DnaK.Proteins 40: 185–192.

    Article  CAS  Google Scholar 

  24. Farr, C. D. and S. N. Witt (1999) ATP lowers the activation enthalpy barriers to DnaK-peptide complex formation and dissociation.Cell Stress Chaperones 4: 77–85.

    Article  CAS  Google Scholar 

  25. Söti, C. and P. Csermely (2002) Chaperones come of age.Cell Stress Chaperones 7: 186–190.

    Article  Google Scholar 

  26. Cuervo, A. M. and J. F. Dice (2000) Age-related decline in chaperone mediated autophagy.J. Biol. Chem. 275: 31505–31513.

    Article  CAS  Google Scholar 

  27. Kurapati, R., H. B. Passananti, M. R. Rose, and J. Tower (2000) Increased hsp22 RNA levels in Drosophila lines genetically selected for increased longevity.J. Gerontol. A Biol. Sci. Med. Sci. 55: 552–559.

    Google Scholar 

  28. Levinthal, C. (1968) Are there pathways for protein folding?J. Chem. Phys. 65: 44–45.

    Google Scholar 

  29. Karplus, M. and D. L. Weaver (1976) protein folding dynamics.Nature 260: 404–406.

    Article  CAS  Google Scholar 

  30. Karplus, M. and D. L. Weaver (1994) Protein folding dynamics: the diffusion collision model and experimental data.Protein Sci. 3: 650–668.

    Article  CAS  Google Scholar 

  31. Wetlaufer, D. B. (1981) Folding of protein fragments.Adv. Prot. Chem. 34: 61–92.

    Article  CAS  Google Scholar 

  32. Kauzmann, W. (1959) Some factors in the interpretation of protein denaturation.Adv. Prot. Chem. 12: 1–64.

    Article  Google Scholar 

  33. Dill, K. A. (1985) theory for the folding and stability of globular proteins.Biochemistry 24: 1501–1509.

    Article  CAS  Google Scholar 

  34. Bryngelson, J. D., J. N. Onuchic, N. D. Socci, and P. G. Wolynes (1995) Funnels, pathways and the energy landscape of protein folding: A synthesis.Protein Struct. Funct. Genet. 21: 1619–1620.

    Google Scholar 

  35. Wolynes, P. G., J. N. Onuchic, and D. Thirumalai (1995) Navigating the folding routes.Science 267: 1619–1620.

    Article  CAS  Google Scholar 

  36. Lorimer, G. H. (1992) Role of accessory protein in protein folding.Curr. Opin. Struct. Biol. 2: 26–34.

    Article  Google Scholar 

  37. Wang, C., M. Eufemi, C. Turano, and A. Giartosie, A. (1996) Influence of the carbohydrate moiety on the stability of glycoproteins.Biochemistry 35: 7299–7307.

    Article  CAS  Google Scholar 

  38. Joly, M. (1965) Physico-chemical approach to the denaturation of proteins, Academic Press, New York.

    Google Scholar 

  39. Eyring, H. (1935) The activated complex in chemical reactions.J. Chem. Phys. 3: 107–115.

    Article  CAS  Google Scholar 

  40. Milardi, D., C. La Rosa, D. Grasso, R. Guzzi, L. Sportelli, and C. Fini (1998) Thermodynamics and kinetics of thermal unfolding of plastocyanin.Eur. Biophys. J. 27: 273–282.

    Article  CAS  Google Scholar 

  41. Flory, N., M. Gorman, P. M. Coutinho, C. Ford, and P. J. Reilly (1994) Thermosensitive mutants ofaspergillus awamori by random mutagenesis: inactivation kinetics and structural interpretation.Protein Eng. 7: 1005–1012.

    Article  CAS  Google Scholar 

  42. Chen, H.-M., U. Bakir, C. Ford, and P. J. Reilly (1994) Increased the thermostability of Asn182-Ala mutantAspergillus awamori glucoamylase.Biotechnol. Bioeng. 43: 101–105.

    Article  CAS  Google Scholar 

  43. Chen, H.-M., Y. Li, T. Panda, F. U. Bücher, C. Ford, and P. J. Reilly (1996) Effect of replacing helican glycine residues with alanines on reversible and irreversible stability and production ofAspergillus awamori gluco-amylase.Protein Eng. 9: 499–505.

    Article  CAS  Google Scholar 

  44. Renaud, J. P., D. R. Davydov, K. P. M. Heirwegh, D. Mansuy, and G. Hui Bon Hoa (1996) Thermodynamic studies of substrate binding and spin transitions in human cytochrome P-450 3A4 expressed in yeast microsomes.Bioichem. J. 319: 675–681.

    CAS  Google Scholar 

  45. Matthews, B. W., H. Nicholson, and W. J. Becktel (1987) Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding.Porc. Natl. Acad. Sci. USA. 84: 6663–6667.

    Article  CAS  Google Scholar 

  46. Matsumura, M., G. Signer, and B. W. Matthews (1989) Substantial increase of protein stability by multiple disulfide bonds.Nature 342: 291–293.

    Article  CAS  Google Scholar 

  47. Boffa, M. B., W. Wang, L. Bajzar, and M. E. Nesheim (1998) Plasma and recombinant thrombin activable fibrinolysis inhibitor (TAFI) and activate TAFI compared with respect to glycosylation, thrombin. thrombomodulindependent activation, thermal stability and enzymatic properties.J. Biol. Chem. 23: 2127–2135.

    Article  Google Scholar 

  48. Masulla, M., G. Ianniciello, P. Arcari, and V. Bocchini (1997) Properties of truncated forms of the elongation factor 1α from the archaeonSulfolobus solfataricus.Eur. J. Biochem. 243: 468–473.

    Article  Google Scholar 

  49. Naidu, G. S. N. and T. Panda (1998) Application of response surface methodology to evaluate some aspects on stability of pectolytic enzymes fromAspergillus niger.Biochem. Eng. J. 2: 71–77.

    Article  CAS  Google Scholar 

  50. Naidu, G. S. N. (1999) Studies on Behviour and Production of Extracellular Pectinases fromAspergillus niger Ph. D. Thesis. Indian Institute of Technology-Madras, Chennai, India.

    Google Scholar 

  51. Kapat, A. and T. Panda (1996) pH and thermal stability studies of chitinase fromTrichoderma harzianum.Bioproc. Eng. 16: 269–272.

    Article  Google Scholar 

  52. Feinberg, B. A., L. Petro, G. Hock, W. Qin, and E. Margoliash (1999) Use of entropies of reaction to predict changes in protein stability: tyrosine-67-phenylalanine variants of rat cytochrome c and yeast iso-1 cytochromes c.J. pharm. Biomed. Anal. 19: 115–125.

    Article  CAS  Google Scholar 

  53. Foster, R. L. (1980)Modification of Enzyme Activity. Croom Helm, London, UK.

    Google Scholar 

  54. Fernandez, A. (2002) Desolvation shell of hydrogen bonds in folded proteins, protein complexes and folding pathways.FEBS Lett. 527: 166.

    Article  CAS  Google Scholar 

  55. Taneja, S. and F. Ahmad (1994) Increased thermostability of proteins in the presence of amino acids.Biochem. J. 303: 147–153.

    CAS  Google Scholar 

  56. Gromiha, M. M. and S. Selvaraj (2002) Important amino acid properties for determining the transition state structures of two-state protein mutants.FEBS Lett. 526: 129–134.

    Article  CAS  Google Scholar 

  57. Ibarra-Molero, B., G. I. Makhatadze, and J. M. Sanchez-Ruiz (1999) Cold denaturation of ubiquitin.Biochim. Biophys. Acta 1429: 384–390.

    CAS  Google Scholar 

  58. A. Tamura (1998) Mutational effects on cold denaturation and hydration of a protein,Streptomyces subtilisin inhibitor.Thermochim. Acta 308: 35–40.

    Article  CAS  Google Scholar 

  59. Hiromi, K., K. Akasaka, Y. Mitsui, B. Tonomura, and S. Murao (1985)Protein Protease Inhibitors—The Case of Streptomyces Subtilisin Inhibitor (SSI), Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  60. Harris, H. K. and V. L. Davidson (1994) Thermal stability of methanol dehydrogenase is altered by the replacement of enzyme bound Ca2+ with Sr2+.Biochem. J. 303: 141–145.

    CAS  Google Scholar 

  61. Sutherland, G. R. J. and S. D. Aust (1997) Thermody-namics of binding of distal calcium to manganese peroxidase.Biochemistry 36: 8567–8573.

    Article  CAS  Google Scholar 

  62. Pradeep, L. and J. B. Udgaonkar (2002) Differential saltinduced stabilization of structure in the initial folding intermediate ensemble of barstar.J. Mol. Biol. 324: 331–347.

    Article  CAS  Google Scholar 

  63. Miroliaei, M. and M. Nemat-Gorgani (2002) Effect of organic solvents on stability and activity of two related alcohol dehydrogenases: a comparative study.Int. J. Biochem. Cell Biol. 34: 169–175.

    Article  CAS  Google Scholar 

  64. Kwon, Y. M., M. Baudys, K. Knutson, and S. W. Kim (2001)In situ study of insulin aggregation induced by water-organic solvent interface.Pharm. Res. 18: 1754–1759.

    Article  CAS  Google Scholar 

  65. Jourdan, M. and M. S. Searle (2001) Insights into the stability of native and partially folded states of ubiquitin: effects of cosolvents and denaturants on the thermodynamics of protein folding.Biochemistry 40: 10317–10325.

    Article  CAS  Google Scholar 

  66. Buck, M. (1998) Trifluoroethanl and colleagues: cosolvents with peptides and proteins.Q Rev. Biophys. 31: 297–355.

    Article  CAS  Google Scholar 

  67. Tyagi, R. and M. N. Gupta (1998) Chemical modification and chemical cross-linking for protein/enzyme stabilization.Biochemistry (Moscow) 6f3: 334–344.

    Google Scholar 

  68. Stevenson, C. L. (2000) Characterization of protein and peptide stability and solubility in non-aqueous solvents.Curr. Pharm. Biotechnol. 1: 165–182.

    Article  CAS  Google Scholar 

  69. Searle, M. S. and M. Jourdan (2000) Templating peptide folding on the surface of a micelle: nucleating the formation of a beta-hairpin.Bioorg. Med. Chem. Lett. 10: 1139–1142.

    Article  CAS  Google Scholar 

  70. Mozhaev, V. (1993) Mechanism based strategies for protein thermostabilization.Trends Biotechnol. 11: 88–94.

    Article  CAS  Google Scholar 

  71. Vieille, C. and J. G. Zeikus (1996) Thermozymes: identifying molecule determinants of protein structural and functional stability.Trends Biotechnol. 14: 183–190.

    Article  CAS  Google Scholar 

  72. Dale, B. E. and Y. Wany (1991) Thermodynamics of high temperature enzymes: A new predictive model. Abstracts of 2001 Meeting of American Chemical Society. USA.

  73. Pantoliano, M. W., R. C. Ladner, P. N. Bryan, M. L. Rollence, J. F. Wood, and G. L. Gilliland (1987) The engineering of disulfide bonds, electrostatic interactions and hydrophobic contacts for the stabilization of subtilisin BPN.Protein Eng. 1: 229.

    Google Scholar 

  74. Pantoliano, M. W., R. C. Ladner, P. N. Bryan, M. L. Rollence, J. F. Wood, and J. L. Poulos (1987) Protein engineering of subtilisin BPN': Enhanced stabilization through the introduction of two cysteines to form a double bond.Biochemistry 26: 2077–2082.

    Article  CAS  Google Scholar 

  75. Breslauer, K. J., R. Frank, H. Bloecker, and L. A. Marky. Predicting DNA duplex stability from the base sequence.Proc. Natl. Acad. Sci. USA 83:3746–3750.

  76. Gilson, M. K., J. A. Given, B. L. Bush, and J. A. McCammon (1997) The statistical-thermodynamic basis for computation of binding affinities: A critical review.Biophys. J. 72: 1047–1069.

    Article  CAS  Google Scholar 

  77. Akiyama, S., S. Takahashi, T. Kimura, K. Ishimori, I. Morishima, Y. Nishikawa, and T. Fujisawa (2002) Conformational landscape of cytochrome c folding studies by microsecond resolved small-angle X-ray scattering.Proc. Natl. Acad. Sci. USA 99: 1329–1334.

    Article  CAS  Google Scholar 

  78. Brooks III, C. L. (2002) Viewing protein folding from many perspectives.Proc. Natl. Acad. Sci. USA 99: 1099–1100.

    Article  CAS  Google Scholar 

  79. Bakk, A., H. S. Joyes, and A. Hansen (2001) Heat capacity of protein folding.Biophys. J. 8: 701–714.

    Google Scholar 

  80. Konig, R. and T. Dandekar (2001) Solvent entropy-driven searching for protein modelling examined and tested in simplified models.Protein Eng. 14: 329–335.

    Article  CAS  Google Scholar 

  81. He, H., G. McAllister, and T. F. Smith (2002) Triage: Protein fold prediction.Proteins Struct. Function Gen. 48: 654–663.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathyanarayana N. Gummadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gummadi, S.N. What is the role of thermodynamics on protein stability?. Biotechnol. Bioprocess Eng. 8, 9–18 (2003). https://doi.org/10.1007/BF02932892

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932892

keywords

Navigation