Skip to main content

Protein Stability: Enhancement and Measurement

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1485))

Abstract

This article defines protein stability, emphasizes its importance and surveys the field of protein stabilization, with summary reference to a selection of 2009–2015 publications. One can enhance stability by, in particular, protein engineering strategies and by chemical modification (including conjugation) in solution. General protocols are set out on how to measure a given protein’s (1) kinetic thermal stability, and (2) oxidative stability, and (3) how to undertake chemical modification of a protein in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloom JD, Labthavikul ST, Otery CR, Arnold FH (2006) Protein stability promotes evolvability. Proc Natl Acad Sci U S A 103:5869–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeldovich KB, Chen P, Shakhnovich EI (2007) Protein stability imposes limits on organism complexity and speed of molecular evolution. Proc Natl Acad Sci U S A 104:16152–16157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mozhaev VV, Martinek K (1982) Inactivation and reactivation of enzymes. Enzyme Microb Technol 4:299–309

    Article  CAS  Google Scholar 

  4. Liu WR, Langer R, Klibanov AM (1991) Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol Bioeng 37:177–184

    Article  CAS  PubMed  Google Scholar 

  5. Costantino HR, Langer R, Klibanov AM (1995) Aggregation of a lyophilized pharmaceutical protein, recombinant human albumin. Biotechnology 13:493–496

    Article  CAS  PubMed  Google Scholar 

  6. Volkin DB, Middaugh CR (1992) The effect of temperature on protein structure. In: Ahern TJ, Manning MC (eds) Stability of protein pharmaceuticals, part A: chemical and physical pathways of protein degradation. Plenum, New York, pp 215–247

    Google Scholar 

  7. Hageman MJ (1992) Water sorption and solid-state stability of proteins. In: Ahern TJ, Manning MC (eds) Stability of protein pharmaceuticals, part A: chemical and physical pathways of protein degradation. Plenum, New York, pp 273–309

    Google Scholar 

  8. Quax WJ (1993) Thermostable glucose isomerases. Trends Food Sci Technol 4:31–34

    Article  CAS  Google Scholar 

  9. Parsell DA, Sauer RT (1989) The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J Biol Chem 264:7590–7595

    CAS  PubMed  Google Scholar 

  10. Mozhaev VV (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol 11:88–95

    Article  CAS  PubMed  Google Scholar 

  11. Zale SE, Klibanov AM (1983) On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes. Biotechnol Bioeng 25:2221–2230

    Article  CAS  PubMed  Google Scholar 

  12. Jerne NK, Perry WLM (1956) The stability of biological standards. Bull World Health Organ 14:167–182

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kirkwood TBL (1984) Design and analysis of accelerated degradation tests for the stability of biological standards III. Principles of design. J Biol Stand 12:215–224

    Article  CAS  PubMed  Google Scholar 

  14. Franks F (1994) Accelerated stability testing of bioproducts: attractions and pitfalls. Trends Biotechnol 12:114–117

    Article  CAS  PubMed  Google Scholar 

  15. Baldwin RL, Eisenberg DE (1987) Protein stability. In: Oxender DL, Fox CF (eds) Protein engineering. Alan R. Liss, New York, pp 127–148

    Google Scholar 

  16. Pace CN (1990) Measuring and increasing protein stability. Trends Biotechnol 8:93–98

    Article  CAS  PubMed  Google Scholar 

  17. Pace CN (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol 131:266–280

    Article  CAS  PubMed  Google Scholar 

  18. Becktel WJ, Schellman JA (1987) Protein stability curves. Biopolymers 26:1859–1877

    Article  CAS  PubMed  Google Scholar 

  19. Ó’Fágáin C (2012) Engineering protein stability. In: Lutz S, Bornscheuer UT (eds) Protein engineering handbook, 3. Wiley-VCH, Weinheim, pp 115–144. ISBN 9783527331239

    Google Scholar 

  20. Ó’Fágáin C (1997) Stabilizing protein function. Springer, Berlin. ISBN 3540631895

    Google Scholar 

  21. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    Article  CAS  PubMed  Google Scholar 

  22. Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR (2008) Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci U S A 105:10360–10365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. West GM, Tang L, Fitzgerald MC (2008) Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy. Anal Chem 80:4175–4185

    Article  CAS  PubMed  Google Scholar 

  24. Dutta S, Koide A, Koide S (2008) High-throughput analysis of the protein sequence-stability landscape using a quantitative yeast surface two-hybrid system and fragment reconstruction. J Mol Biol 382:721–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoffmann B, Eichmüller C, Steinhauser O, Konrat R (2005) Rapid assessment of protein structural stability and fold validation via NMR. Methods Enzymol 394:142–174

    Article  CAS  PubMed  Google Scholar 

  26. Park CW, Marqusee S (2005) Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding. Nat Methods 2:207–212

    Article  CAS  PubMed  Google Scholar 

  27. Bo T, Pawliszyn J (2006) Protein thermal stability and phospoprotein-lipid interaction investigated by capillary isoelectric focusing with whole column imaging detection. J Sep Sci 29:1018–1025

    Article  CAS  PubMed  Google Scholar 

  28. Aucamp JP, Cosme AM, Lye GJ, Dalby PA (2005) High-throughput measurement of protein stability in microtiter plates. Biotechnol Bioeng 89:599–607

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Minasov G, Shoichet BK (2002) Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J Mol Biol 320:85–95

    Article  CAS  PubMed  Google Scholar 

  30. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2:891–902

    Article  CAS  PubMed  Google Scholar 

  31. Dellus-Gur E, Toth-Petroczy A, Elias M, Tawfik DS (2013) What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs. J Mol Biol 425:2609–2621. doi:10.1016/j.jmb.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  32. Speck J, Hecky J, Tam H, Arndt KM, Einsle O, Mueller KM (2012) Exploring the molecular linkage of protein stability traits for enzyme optimization by iterative truncation and evolution. Biochemistry 51:4850–4867. doi:10.1021/bi2018738

    Article  CAS  PubMed  Google Scholar 

  33. Valderrama B, Garcia-Arellano H, Giansanti S, Baratto MC, Pogni R, Vazquez-Duhalt R (2006) Oxidative stabilization of iso-1-cytochrome c by redox-inspired protein engineering. FASEB J 20:1233–1235

    Article  CAS  PubMed  Google Scholar 

  34. Palmer B, Angus K, Taylor L, Warwicker J, Derrick JP (2008) Design of stability at extreme alkaline pH in streptococcal protein G. J Biotechnol 134:222–230

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez-Larrea D, Minning S, Borchert TV, Sanchez-Ruiz JM (2006) Role of salvation barriers in protein kinetic stability. J Mol Biol 360:715–724

    Article  CAS  PubMed  Google Scholar 

  36. Minetti CASA, Remeta DP (2006) Energetics of membrane protein folding and stability. Arch Biochem Biophys 453:32–53

    Article  CAS  PubMed  Google Scholar 

  37. Wunderlich M, Martin A, Schmid FX (2005) Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of coulombic interactions. J Mol Biol 347:1063–1076

    Article  CAS  PubMed  Google Scholar 

  38. Wunderlich M, Martin A, Staab CA, Schmid FX (2005) Evolutionary protein stabilization in comparison with computational design. J Mol Biol 351:1160–1168

    Article  CAS  PubMed  Google Scholar 

  39. Barakat NH, Barakat NH, Carmody LJ, Love JJ (2007) Exploiting elements of transcriptional machinery to enhance protein stability. J Mol Biol 366:103–116

    Article  CAS  PubMed  Google Scholar 

  40. Sarkar CA, Dodevski I, Kenig M, Dudli S, Mohr A, Hermans E, Plueckthen A (2008) Directed evolution of a G protein-coupled receptor for expression, stability and binding selectivity. Proc Natl Acad Sci U S A 105:14808–14813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chaparro-Riggers JF, Polizzi KM, Bommarius AS (2007) Better library design: data-driven protein engineering. Biotechnol J 2:180–191

    Article  PubMed  Google Scholar 

  42. Bommarius AS, Broering JM, Chaparro-Riggers JF, Polizzi KM (2006) High-throughput screening for enhanced protein stability. Curr Opin Biotechnol 17:606–610

    Article  CAS  PubMed  Google Scholar 

  43. Steipe B (2004) Consensus-based engineering of protein stability: from intrabodies to thermostable enzymes. Methods Enzymol 388:176–186

    Article  CAS  PubMed  Google Scholar 

  44. Tripp KW, Barrick D (2007) Enhancing the stability and folding rate of a repeat protein through the addition of consensus repeats. J Mol Biol 365:1187–1200

    Article  CAS  PubMed  Google Scholar 

  45. Kloss E, Courtemanche N, Barrick D (2008) Repeat protein folding: new insights into origins of cooperativity, stability and topology. Arch Biochem Biophys 469:83–89

    Article  CAS  PubMed  Google Scholar 

  46. Bae E, Bannen RM, Phillips GN (2008) Bioinformatic method for protein thermal stabilization by structural entropy optimization. Proc Natl Acad Sci U S A 105:9594–9597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gromiha MM (2005) Distinct roles of conventional non-covalent and cation-pi interactions in protein stability. Polymer 46:983–990

    Article  CAS  Google Scholar 

  48. Yin S, Ding F, Dokholyan NV (2007) Modelling backbone flexibility improves protein stability estimation. Structure 15:1567–1576

    Article  CAS  PubMed  Google Scholar 

  49. Wiederstein M, Sippl MJ (2005) Protein sequence randomization: efficient estimation of protein stability using knowledge-based potentials. J Mol Biol 345:1199–1212

    Article  CAS  PubMed  Google Scholar 

  50. Saraboji K, Gromiha MM, Ponnuswamy MN (2006) Average assignment method for predicting the stability of protein mutants. Biopolymers 82:80–92

    Article  CAS  PubMed  Google Scholar 

  51. Campos LA, Garcia-Mira MM, Godoy-Ruiz R, Sanchez-Ruiz JM, Sancho J (2004) Do proteins always benefit from a stability increase? J Mol Biol 344:223–237

    Article  CAS  PubMed  Google Scholar 

  52. Gromiha MM, Huang L-T (2011) Machine learning algorithms for predicting protein folding rates and stability of mutant proteins: comparison with statistical methods. Curr Protein Pept Sci 12:490–502

    Article  CAS  PubMed  Google Scholar 

  53. Masso M, Vaisman II (2008) Accurate prediction of stability changes in protein mutants by combining machine learning with structure-based computational mutagenesis. Bioinformatics 24:2002–2009

    Article  CAS  PubMed  Google Scholar 

  54. Tan YH, Luo R (2008) Protein stability prediction: a Poisson-Boltzmann approach. J Phys Chem B 112:1875–1883

    Article  CAS  PubMed  Google Scholar 

  55. Huang LT, Gromiha MM, Ho SY (2007) Sequence analysis and rule development of predicting protein stability change upon mutation using decision tree model. J Mol Model 13:879–890

    Article  CAS  PubMed  Google Scholar 

  56. Zoete V, Meuwly M (2006) Importance of individual side chains for the stability of a protein fold: computational alanine scanning of the insulin monomer. J Comput Chem 27:1843–1857

    Article  CAS  PubMed  Google Scholar 

  57. Cheng JL, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62:1125–1132

    Article  CAS  PubMed  Google Scholar 

  58. Marrero-Ponce Y, Medina-Marrero R, Castillo-Garit JA, Romero-Zaldivar V, Torrens F, Castro EA (2005) Protein linear indices of the ‘macromolecular pseudograph alpha-carbon atom adjacency matrix’ in bioinformatics. Part 1. Bioorg Med Chem 13:3003–3015

    Article  CAS  PubMed  Google Scholar 

  59. Cuff AL, Martin ACR (2004) Analysis of void volumes in proteins and application to the stability of the p53 tumour suppressor protein. J Mol Biol 344:1199–1209

    Article  CAS  PubMed  Google Scholar 

  60. Bordner AJ, Abagyan RA (2004) Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins 57:400–413

    Article  CAS  PubMed  Google Scholar 

  61. Kim YH, Stites WE (2008) Effects of excluded volume upon protein stability in covalently cross-linked proteins with variable linker lengths. Biochemistry 47:8804–8814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shental-Bechor D, Levy Y (2008) Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc Natl Acad Sci U S A 105:8256–8261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Spiriti J, Bogani F, van der Vaart A, Ghirlanda G (2008) Modulation of protein stability by O-glycosylation in a designed Gc-MAF analog. Biophys Chem 134:157–167

    Article  CAS  PubMed  Google Scholar 

  64. Rasekh B, Khajeh K, Ranjbar B, Mollania N, Almasinia B, Tirandaz H (2014) Protein engineering of laccase to enhance its activity and stability in the presence of organic solvents. Eng Life Sci 14:442–448. doi:10.1002/elsc.201300042

    Article  CAS  Google Scholar 

  65. Yang H, Liu L, Shin H, Chen RR, Li J, Du G, Chen J (2013) Structure-based engineering of histidine residues in the catalytic domain of alpha-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. J Biotechnol 164:59–66. doi:10.1016/j.jbiotec.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  66. Bao X, Huang X, Lu X, Li J (2014) Improvement of hydrogen peroxide stability of Pleurotus eryngii versatile ligninolytic peroxidase by rational protein engineering. Enzyme Microb Technol 54:51–58. doi:10.1016/j.enzmictec.2013.10.003

    Article  PubMed  CAS  Google Scholar 

  67. Lamazares E, Clemente I, Bueno M, Velazquez-Campoy A, Sancho J (2015) Rational stabilization of complex proteins: a divide and combine approach. Sci Rep 5:9129. doi:10.1038/srep09129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Fulton A, Frauenkron-Machedjou VJ, Skoczinski P, Wilhelm S, Zhu L, Schwaneberg U, Jaeger K (2015) Exploring the protein stability landscape: Bacillus subtilis lipase A as a model for detergent tolerance. Chembiochem 16:930–936. doi:10.1002/cbic.201402664

    Article  CAS  PubMed  Google Scholar 

  69. Sullivan BJ, Nguyen T, Durani V, Mathur D, Rojas S, Thomas M, Syu T, Magliery TJ (2012) Stabilizing proteins from sequence statistics: the interplay of conservation and correlation in triosephosphate isomerase stability. J Mol Biol 420:384–399. doi:10.1016/j.jmb.2012.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ye X, Zhang C, Zhang Y-P (2012) Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase. Mol Biosyst 8:1815–1823. doi:10.1039/c2mb05492b

    Article  CAS  PubMed  Google Scholar 

  71. Dror A, Shemesh E, Dayan N, Fishman A (2014) Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Appl Environ Microbiol 80:1515–1527. doi:10.1128/AEM.03371-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Yong KJ, Scott DJ (2015) Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS). Biotechnol Bioeng 112:438–446. doi:10.1002/bit.25451

    Article  CAS  PubMed  Google Scholar 

  73. Wyganowski KT, Kaltenbach M, Tokuriki N (2013) GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates. J Mol Biol 425:3403–3414. doi:10.1016/j.jmb.2013.06.028

    Article  CAS  PubMed  Google Scholar 

  74. Lindgren J, Karlstrom AE (2014) Intramolecular thioether crosslinking of therapeutic proteins to increase proteolytic stability. Chembiochem 15:2132–2138. doi:10.1002/cbic.201400002

    Article  CAS  PubMed  Google Scholar 

  75. Usharani N, Jayakumar GC, Kanth SV, Rao JR (2014) Stabilization of collagen through bioconversion: an insight in protein-protein interaction. Biopolymers 101:903–911. doi:10.1002/bip.22473

    Article  CAS  PubMed  Google Scholar 

  76. Lawrence PB, Gavrilov Y, Matthews SS, Langlois MI, Shental-Bechor D, Greenblatt HM, Pandey BK, Smith MS, Paxman R, Torgerson CD, Merrell JP, Ritz CC, Prigozhin MB, Levy Y, Price JL (2014) Criteria for selecting PEGylation sites on proteins for higher thermodynamic and proteolytic stability. J Am Chem Soc 136:17547–17560. doi:10.1021/ja5095183

    Article  CAS  PubMed  Google Scholar 

  77. Pandey BK, Smith MS, Price JL (2014) Cys(i)-lys(i + 3)-lys(i + 4) triad: a general approach for PEG-based stabilization of alpha-helical proteins. Biomacromolecules 15:4643–4647. doi:10.1021/bm501546k

    Article  CAS  PubMed  Google Scholar 

  78. Natalello A, Ami D, Collini M, D’Alfonso L, Chirico G, Tonon G, Scaramuzza S, Schrepfer R, Doglia SM (2012) Biophysical characterization of met-G-CSF: effects of different site-specific mono-pegylations on protein stability and aggregation. PLoS One 7:e42511. doi:10.1371/journal.pone.0042511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Keefe AJ, Jiang S (2012) Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat Chem 4:60–64. doi:10.1038/nchem.1213

    Google Scholar 

  80. Prashar D, Cui D, Bandyopadhyay D, Luk Y (2011) Modification of proteins with cyclodextrins prevents aggregation and surface adsorption and increases thermal stability. Langmuir 27:13091–13096. doi:10.1021/la203271u

    Article  CAS  PubMed  Google Scholar 

  81. Rathore N, Rajan RS (2008) Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol Prog 24:504–514

    Article  CAS  PubMed  Google Scholar 

  82. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  PubMed  Google Scholar 

  83. Godfrey T, West S (1996) Industrial enzymology, 2nd edn. Macmillan, London

    Google Scholar 

  84. Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Stuermer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824

    Article  CAS  Google Scholar 

  85. Miyazaki M, Maeda H (2006) Microchannel enzyme reactors and their applications for processing. Trends Biotechnol 24:463–470

    Article  CAS  PubMed  Google Scholar 

  86. Schmid A, Hollmann F, Park JB et al (2002) The use of enzymes in the chemical industry in Europe. Curr Opin Biotechnol 13:359–366

    Article  CAS  PubMed  Google Scholar 

  87. Van den Burg B, Vriend G, Veltman OR, Eijsink VGH (1998) Engineering an enzyme to resist boiling. Proc Natl Acad Sci U S A 95:2056–2060

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cicerone MT, Pikal MJ, Qian KK (2015) Stabilization of proteins in solid form. Adv Drug Deliv Rev 93:14–24. doi:10.1016/j.addr.2015.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Balcao VM, Vila MMDC (2015) Structural and functional stabilization of protein entities: state-of-the-art. Adv Drug Deliv Rev 93:25–41. doi:10.1016/j.addr.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  90. Suplatov D, Voevodin V, Svedas V (2015) Robust enzyme design: bioinformatic tools for improved protein stability. Biotechnol J 10:344–355

    Article  CAS  PubMed  Google Scholar 

  91. Pearson JT, Rock DA (2015) Bioanalytical approaches to assess the proteolytic stability of therapeutic fusion proteins. Bioanalysis 7:3035–3051. doi:10.4155/bio.15.217

    Article  CAS  PubMed  Google Scholar 

  92. Wang W, Ignatius AA, Thakkar SV (2014) Impact of residual impurities and contaminants on protein stability. J Pharm Sci 103:1315–1330. doi:10.1002/jps.23931

    Article  CAS  PubMed  Google Scholar 

  93. Patel R, Kumari M, Khan AB (2014) Recent advances in the applications of ionic liquids in protein stability and activity: a review. Appl Biochem Biotechnol 172:3701–3720. doi:10.1007/s12010-014-0813-6

    Article  CAS  PubMed  Google Scholar 

  94. Chaudhuri R, Cheng Y, Middaugh CR, Volkin DB (2014) High-throughput biophysical analysis of protein therapeutics to examine interrelationships between aggregate formation and conformational stability. AAPS J 16:48–64. doi:10.1208/s12248-013-9539-6

    Article  CAS  PubMed  Google Scholar 

  95. Johnson CM (2013) Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 531:100–109. doi:10.1016/j.abb.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  96. Durani V, Magliery TJ (2013) Protein engineering and stabilization from sequence statistics: variation and covariation analysis. Methods Enzymol 523:237–256. doi:10.1016/B978-0-12-394292-0.00011-4

    Article  CAS  PubMed  Google Scholar 

  97. Serno T, Geidobler R, Winter G (2011) Protein stabilization by cyclodextrins in the liquid and dried state. Adv Drug Deliv Rev 63:1086–1106. doi:10.1016/j.addr.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  98. Magliery TJ, Lavinder JJ, Sullivan BJ (2011) Protein stability by number: high-throughput and statistical approaches to one of protein science’s most difficult problems. Curr Opin Chem Biol 15:443–451. doi:10.1016/j.cbpa.2011.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Holthauzen LMF, Auton M, Sinev M, Rosgen J (2011) Protein stability in the presence of cosolutes. Methods Enzymol 492:61–125. doi:10.1016/B978-0-12-381268-1.00015-X

    Article  CAS  PubMed  Google Scholar 

  100. Socha RD, Tokuriki N (2013) Modulating protein stability—directed evolution strategies for improved protein function. FEBS J 280:5582–5595. doi:10.1111/febs.12354

    Article  CAS  PubMed  Google Scholar 

  101. Hernandez-Ruiz J et al (2001) Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2. Biochem J 354:107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arnold FH, Lin Z (2000) Expression of functional eukaryotic proteins. Worldwide Patent PCT/US99/17127, WO 00/006718

    Google Scholar 

  103. Hiner ANP et al (1995) A comparative study of the inactivation of wild-type, recombinant and two mutant horseradish peroxidase isoenzymes C by hydrogen peroxide and m-chloroperoxybenzoic acid. Eur J Biochem 234:506–512

    Article  CAS  PubMed  Google Scholar 

  104. Lundblad RL (2005) Chemical reagents for protein modification, 3rd edn. CRC Press, Boca Raton, FL. ISBN 9780849319839

    Google Scholar 

  105. Means GE, Feeney RE (1990) Chemical modification of proteins: history and applications. Bioconjug Chem 1:2–12

    Article  CAS  PubMed  Google Scholar 

  106. Riddles PW, Blakely RL, Zerner B (1983) Reassessment of Ellman’s reagent. Methods Enzymol 91:49–60

    Article  CAS  PubMed  Google Scholar 

  107. Roig MG, Kennedy JF (1992) Perspectives for chemical modifications of enzymes. CRC Crit Rev Biotechnol 12:391–412

    Article  CAS  Google Scholar 

  108. Riordan JF, Vallee BL (1972) Reactions with N-ethylmaleimide and p-mercuribenzoate. Methods Enzymol 25:449–456

    Article  CAS  PubMed  Google Scholar 

  109. Fields R (1972) The rapid determination of amino groups with TNBS. Methods Enzymol 25:464–468

    Article  CAS  PubMed  Google Scholar 

  110. Inman JK, Perham RN, DuBois GC et al (1983) Amidination. Methods Enzymol 91:559–569

    Article  CAS  PubMed  Google Scholar 

  111. Klapper MH, Klotz IM (1972) Acylation with dicarboxylic acid anhydrides. Methods Enzymol 25:531–536

    Article  CAS  PubMed  Google Scholar 

  112. Jentoft N, Dearborn DG (1983) Protein labeling by reductive alkylation. Methods Enzymol 91:570–579

    Article  CAS  PubMed  Google Scholar 

  113. Yankeelov JA (1972) Modification of arginine by diketones. Methods Enzymol 25:566–579

    Article  CAS  PubMed  Google Scholar 

  114. Pande CS, Pelzig M, Glass JD (1980) Camphorquinoe-10-sulfonic acid and derivatives: convenient reagents for reversible modification of arginine residues. Proc Natl Acad Sci U S A 77:895–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dominici P, Tancini B, Voltattorni CB (1985) Chemical modification of pig kidney 3,4-dihydroxyphenylalanine decarboxylase with diethyl pyrocarbonate. J Biol Chem 260:10583–10589

    CAS  PubMed  Google Scholar 

  116. Carraway KL, Koshland DE (1972) Carbodiimide modification of proteins. Methods Enzymol 25:616–623

    Article  CAS  PubMed  Google Scholar 

  117. Wilcox PE (1972) Esterification. Methods Enzymol 25:596–616

    Article  CAS  PubMed  Google Scholar 

  118. Riordan JF, Vallee BL (1972) Nitration with tetranitromethane. Methods Enzymol 25:515–521

    Article  CAS  PubMed  Google Scholar 

  119. Morrison M (1970) Iodination of tyrosine: isolation of lactoperoxidase (bovine). Methods Enzymol 17:653–660

    Article  Google Scholar 

  120. Spande TF, Witkop B (1967) Determination of the tryptophan content of protein with N-bromosuccinimide. Methods Enzymol 11:498–532

    Article  CAS  Google Scholar 

  121. Neumann NP (1972) Oxidation with hydrogen peroxide. Methods Enzymol 25:393–401

    Article  CAS  PubMed  Google Scholar 

  122. Lundblad RL (2009) Application of solution protein chemistry to biotechnology. Taylor & Francis/CRC Press, Boca Raton

    Book  Google Scholar 

  123. Lundblad RL (2006) The evolution from protein chemistry to proteomics: basic science to clinical application. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  124. Wong SS, Wong L-JC (1992) Chemical crosslinking and the stabilization of proteins and enzymes. Enzyme Microb Technol 14:866–874

    Article  CAS  PubMed  Google Scholar 

  125. Hirs CHW, Timasheff SN (eds) (1972) Methods in Enzymology, vol 25. Academic Press, New York

    Google Scholar 

  126. Hirs CHW, Timasheff SN (eds) (1983) Methods in Enzymology, vol 91. Academic Press, New York

    Google Scholar 

  127. Sadana A (1988) Enzyme deactivation. Biotechnol Adv 6:349–446

    Article  CAS  PubMed  Google Scholar 

  128. Wold F (1972) Bifunctional reagents. Methods Enzymol 25:623–651

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciarán Ó’Fágáin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ó’Fágáin, C. (2017). Protein Stability: Enhancement and Measurement. In: Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology, vol 1485. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6412-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6412-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6410-9

  • Online ISBN: 978-1-4939-6412-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics