Skip to main content

Experimental and Computational Methods to Determine Protein Structure and Stability

  • Chapter
  • First Online:
Frontiers in Protein Structure, Function, and Dynamics

Abstract

Proteins are versatile biological macromolecules that are involved in many essential processes and basic functions of a cell, including catalytic activity, storage, transport, cell structure, metabolism, cell signaling, and immunity. The functions of proteins are dictated by their structures. For instance, the shape, catalytic activity, and specificity of enzymes depend on both the sequence of amino acids in their active site to which the substrate or drug binds and the nature of protein folding. The stability of protein will determine if a protein is in native folded conformation or the unfolded or denatured state. The key role of drug designing is to enhance protein stability since the marginal stability of a protein could cause loss of protein function, increased degradation, and difficulty in synthesizing protein-based drugs. The folded structure of a protein is stabilized by several atomic interactions such as electrostatic, hydrophobic, van der Waals, disulfide, and hydrogen bonds, while the entropic or non-entropic interactions dominate the unfolded protein conformations. This chapter provides an overview of the techniques to determine the structure and stability of proteins addressing the principles involved in structure prediction with specific highlights on widely used experimental methods and computational techniques, namely protein purification techniques, biophysical/biochemical characterization of proteins, protein structure determining methods, factors contributing to protein stability, and conformational analysis of protein folding. This combination of advanced experimental and computational approaches in predicting the protein structure and measuring its stability serves to an exciting future in drug designing and stability engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews PR, Craik DJ, Martin JL (1984) Functional group contributions to drug-receptor interactions. J Med Chem 27(12):1648–1657

    CAS  PubMed  Google Scholar 

  • Anfinsen CB, Haber E, Sela M, White FH Jr (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci U S A 47(9):1309–1320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batchelor M, Wolny M, Baker EG, Paci E, Kalverda AP, Peckham M (2019) Dynamic ion pair behavior stabilizes single α-helices in proteins. J Biol Chem 294(9):3219–3234

    CAS  PubMed  Google Scholar 

  • Bencharit S, Border MB (2012) Where are we in the world of proteomics and bioinformatics? Expert Rev Proteomics 9(5):489–491

    CAS  PubMed  Google Scholar 

  • Brown CW, Sridhara V, Boutz DR, Person MD, Marcotte EM, Barrick JE, Wilke CO (2017) Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. BMC Genom 18(1):301

    Google Scholar 

  • Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, Christie C, Dalenberg K, Duarte JM, Dutta S, Feng Z (2019) RCSB protein data bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res 47(D1):D464–D474

    CAS  PubMed  Google Scholar 

  • Capasso S, Mazzarella L, Zagari A (1991) Deamidation via cyclic imide of asparaginyl peptides: dependence on salts, buffers and organic solvents. Pept Res 4(4):234–238

    CAS  PubMed  Google Scholar 

  • Christensen DG, Xie X, Basisty N, Byrnes J, McSweeney S, Schilling B, Wolfe J (2019) Post-translational protein acetylation: an elegant mechanism for bacteria to dynamically regulate metabolic functions. Front Microbiol 10:1604

    PubMed  PubMed Central  Google Scholar 

  • Clarke S (2003) Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damaged proteins for repair. Ageing Res Rev 2(3):263–285

    CAS  PubMed  Google Scholar 

  • Cunin R, Glansdorff N, Pierard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50(3):314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28(4):427–435

    CAS  PubMed  Google Scholar 

  • Doyle ML (1997) Characterization of binding interactions by isothermal titration calorimetry. Curr Opin Biotech 8(1):31–35

    CAS  PubMed  Google Scholar 

  • Englander SW, Mayne L (2014) The nature of protein folding pathways. Proc Natl Acad Sci U S A 111(45):15873–15880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erlandsen H, Stevens RC (1999) The structural basis of phenylketonuria. Mol Genet Metab 68(2):103–125

    CAS  PubMed  Google Scholar 

  • Feke DL, Prabhu ND, Mann JA Jr, Mann JA III (1984) A formulation of the short-range repulsion between spherical colloidal particles. J Phys Chem 88(23):5735–5739

    CAS  Google Scholar 

  • Georgalis Y, Schüler J, Frank J, Soumpasis MD, Saenger W (1995) Protein crystallization screening through scattering techniques. Adv Colloid Interfac 58(1):57–86

    CAS  Google Scholar 

  • Gromiha MM (2010) Protein bioinformatics: from sequence to function. Academic Press; Elsevier, Amsterdam

    Google Scholar 

  • Hao P, Adav SS, Gallart-Palau X, Sze SK (2017) Recent advances in mass spectrometric analysis of protein deamidation. Mass Spectrom Rev 36(6):677–692

    CAS  PubMed  Google Scholar 

  • Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21(5):539–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubner IA, Deeds EJ, Shakhnovich EI (2006) Understanding ensemble protein folding at atomic detail. Proc Natl Acad Sci U S A 103(47):17747–17752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hushcha TO, Luik AI, Naboka YN (2000) Conformation changes of albumin in its interaction with physiologically active compounds as studied by quasi-elastic light scattering spectroscopy and ultrasonic method. Talanta 53(1):29–34

    CAS  PubMed  Google Scholar 

  • Janson JC (2012) Protein purification: principles, high resolution methods, and applications, vol 151. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Jaramillo-Flores ME, Soriano-García M, Moreno A (1998) The influence of polyethyleneglycols on predicting crystallisation conditions of lipase from wheat germ by dynamic light scattering studies. J Mol Struct 444(1–3):155–164

    Google Scholar 

  • Jia L, Sun Y (2017) Protein asparagine deamidation prediction based on structures with machine learning methods. PLoS One 12(7):1–10

    Google Scholar 

  • Johnson CM (2013) Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 531(1–2):100–109

    CAS  PubMed  Google Scholar 

  • Johnson LN, Lewis RJ (2001) Structural basis for control by phosphorylation. Chem Rev 101(8):2209–2242

    CAS  PubMed  Google Scholar 

  • Kadima W, McPherson A, Dunn MF, Jurnak F (1991) Precrystallization aggregation of insulin by dynamic light scattering and comparison with canavalin. J Cryst Growth 110(1–2):188–194

    CAS  Google Scholar 

  • Kentache T, Jouenne T, De E, Hardouin J (2016) Proteomic characterization of Nα-and Nε-acetylation in Acinetobacter baumannii. J Proteome 144:148–158

    CAS  Google Scholar 

  • Kobe B, Jennings IG, House CM, Michell BJ, Goodwill KE, Santarsiero BD, Stevens RC, Cotton RG, Kemp BE (1999) Structural basis of autoregulation of phenylalanine hydroxylase. Nat Struct Biol 6(5):442–448

    CAS  PubMed  Google Scholar 

  • Laue TM, Stafford WF III (1999) Modern applications of analytical ultracentrifugation. Annu Rev Biophys Biomol 28(1):75–100

    CAS  Google Scholar 

  • Li B, Gorman EM, Moore KD, Williams T, Schowen RL, Topp EM, Borchardt RT (2005) Effects of acidic N+ 1 residues on asparagine deamidation rates in solution and in the solid state. J Pharm Sci 94(3):666–675

    CAS  PubMed  Google Scholar 

  • Lyumkis D (2019) Challenges and opportunities in cryo-EM single-particle analysis. J Biol Chem 294(13):5181–5197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura Y, Takehira M, Joti Y, Ogasahara K, Tanaka T, Ono N, Kunishima N, Yutani K (2015) Thermodynamics of protein denaturation at temperatures over 100 C: CutA1 mutant proteins substituted with hydrophobic and charged residues. Sci Rep 5:15545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikol V, Vincendon P, Eriani G, Hirsch E, Giege R (1991) Diagnostic of protein crystallization by dynamic light scattering; an application to an aminoacyl-tRNA synthetase. J Cryst Growth 110(1–2):195–200

    CAS  Google Scholar 

  • Miles AJ, Wallace BA (2016) Circular dichroism spectroscopy of membrane proteins. Chem Soc Rev 45(18):4859–4872

    CAS  PubMed  Google Scholar 

  • Nachiappan M, Jain V, Sharma A, Manickam Y, Jeyakanthan J (2019) Conformational changes in glutaminyl-tRNA synthetases upon binding of the substrates and analogs using molecular docking and molecular dynamics approaches. J Biomol Struct Dyn 38(6):1575–1589

    Google Scholar 

  • Nachiappan M, Jain V, Sharma A, Yogavel M, Jeyakanthan J (2018) Structural and functional analysis of Glutaminyl-tRNA synthetase (TtGlnRS) from Thermus thermophilus HB8 and its complexes. Int J Biol Macromol 120:1379–1386

    CAS  PubMed  Google Scholar 

  • Nikolaev DM, Shtyrov AA, Panov MS, Jamal A, Chakchir OB, Kochemirovsky VA, Olivucci M, Ryazantsev MN (2018) A comparative study of modern homology modeling algorithms for rhodopsin structure prediction. ACS Omega 3(7):7555–7566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ouidir T, Jarnier F, Cosette P, Jouenne T, Hardouin J (2015) Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14. J Proteome 114:214–225

    CAS  Google Scholar 

  • Parker MW (2003) Protein structure from X-ray diffraction. J Biol Phys 29(4):341–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce MM, Raman CS, Nall BT (1999) Isothermal titration calorimetry of protein–protein interactions. Methods 19(2):213–221

    CAS  PubMed  Google Scholar 

  • Plotkin SS, Onuchic JN (2002) Understanding protein folding with energy landscape theory part I: basic concepts. Q Rev Biophys 35(2):111–167

    CAS  PubMed  Google Scholar 

  • Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB (2011) The formation and function of molecules depend on chemical bonding between atoms. In: Campbell biology, vol 10. Pearson, San Francisco, CA, p 38

    Google Scholar 

  • Roe S (2001) Protein purification techniques: a practical approach, vol 244. OUP, Oxford

    Google Scholar 

  • Roth CM, Neal BL, Lenhoff AM (1996) Van der Waals interactions involving proteins. Biophys J 70(2):977–987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shehu A, Barbara D, Molloy K (2016) A survey of computational methods for protein function prediction. In: Wong KC (ed) Big data analytics in genomics. Springer, Cham

    Google Scholar 

  • Smyth MS, Martin JHJ (2000) X-ray crystallography. J Clin Pathol 53:8–14

    CAS  Google Scholar 

  • Su XD, Zhang H, Terwilliger TC, Liljas A, Xiao J, Dong Y (2015) Protein crystallography from the perspective of technology developments. Crystallogr Rev 21(1–2):122–153

    PubMed  PubMed Central  Google Scholar 

  • Sugiki T, Kobayashi N, Fujiwara T (2017) Modern technologies of solution nuclear magnetic resonance spectroscopy for three-dimensional structure determination of proteins open avenue for life scientists. Comput Struct Biotechnol J 15:328–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan YZ, Aiyer S, Mietzsch M, Hull JA, McKenna R, Grieger J, Samulski RJ, Baker TS, Agbandje-McKenna M, Lyumkis D (2018) Sub-2 Ã… Ewald curvature corrected structure of an AAV2 capsid variant. Nat Commun 9(1):1–11

    Google Scholar 

  • Tanford C, Reynolds J (2001) Nature’s robots: a history of proteins. Oxford University Press, Oxford

    Google Scholar 

  • Trevino SR, Scholtz JM, Pace CN (2008) Measuring and increasing protein solubility. J Pharm Sci 97(10):4155–4166

    CAS  PubMed  Google Scholar 

  • Tripathi T (2013) Calculation of thermodynamic parameters of protein unfolding using far-ultraviolet circular dichroism. J Proteins Proteomics 4(2):85–91

    Google Scholar 

  • Venkatesan A, Gopal J, Candavelou M, Gollapalli S, Karthikeyan K (2013) Computational approach for protein structure prediction. Healthc Inform Res 19(2):137–147

    PubMed  PubMed Central  Google Scholar 

  • Walsh MK, Marlon JR, Goring SJ, Brown KJ, Gavin DG (2015) A regional perspective on Holocene fire–climate–human interactions in the Pacific Northwest of North America. Ann Assoc Am Geogr 105(6):1135–1157

    Google Scholar 

  • Zhang W, Xiao S, Ahn DU (2014) Protein oxidation: basic principles and implications for meat quality. Crit Rev Food Sci 53(11):1191–1201

    Google Scholar 

  • Wider G (2005) NMR techniques used with very large biological macromolecules in solution. Method Enzymol 394:382–398

    CAS  Google Scholar 

  • Withers P (2013) Landing spacecraft on Mars and other planets: an opportunity to apply introductory physics. Am J Phys 81(8):565–569

    Google Scholar 

  • Zhen J, Kim J, Zhou Y, Gaidamauskas E, Subramanian S, Feng P (2018) Antibody characterization using novel ERLIC-MS/MS-based peptide mapping. MAbs 10(7):951–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou HX, Pang X (2018) Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev 118(4):1691–1741

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

J.J. and his group thank the DST INDO-TAIWAN (GITA/DST/TWN/P-86/2019 dated: 04/03/2020), Board of Research in Nuclear Sciences (BRNS) (35/14/ 02/2018 BRNS/35009), Indian Council for Medical Research (ICMR) (No. BIC/12(07)/2015), DST-Science and Engineering Research Board (SERB) (No. EMR/2016/000498), UGC Research Award (No. F. 30-32/2016(SA-II) Dt.18.04.2016), DST-Fund for Improvement of S&T Infrastructure in Universities & Higher Educational Institutions (FIST) (SR/FST/LSI-667/2016) (C), DST-Promotion of University Research and Scientific Excellence (PURSE) (No. SR/PURSE Phase 2/38 (G), 2017 and MHRD-RUSA 2.0, New Delhi (F.24-51/2014-U, Policy (TNMulti-Gen), Dept. of Edn., Govt. of India, Dt.09.10.2018).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mutharasappan, N. et al. (2020). Experimental and Computational Methods to Determine Protein Structure and Stability. In: Singh, D., Tripathi, T. (eds) Frontiers in Protein Structure, Function, and Dynamics. Springer, Singapore. https://doi.org/10.1007/978-981-15-5530-5_2

Download citation

Publish with us

Policies and ethics