Skip to main content

Protein Stability: Enhancement and Measurement

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2699))

  • 864 Accesses

Abstract

This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014–2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein’s (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes evolvability. Proc Natl Acad Sci 103(15):5869–5874. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0510098103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeldovich KB, Chen P, Shakhnovich EI (2007) Protein stability imposes limits on organism complexity and speed of molecular evolution. Proc Natl Acad Sci 104(41):16152–16157. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0705366104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kurahashi R, Sano S, Takano K (2018) Protein evolution is potentially governed by protein stability: directed evolution of an esterase from the hyperthermophilic archaeon Sulfolobus tokodaii. J Mol Evol 86(5):283–292. Available from: http://link.springer.com/10.1007/s00239-018-9843-y

    Article  CAS  PubMed  Google Scholar 

  4. Rinaldi S, Gori A, Annovazzi C, Ferrandi EE, Monti D, Colombo G (2017) Unraveling energy and dynamics determinants to interpret protein functional plasticity: the limonene-1,2-epoxide-hydrolase case study. J Chem Inf Model 57(4):717–725. Available from: https://pubs.acs.org/doi/10.1021/acs.jcim.6b00504

    Article  CAS  PubMed  Google Scholar 

  5. Agozzino L, Dill KA (2018) Protein evolution speed depends on its stability and abundance and on chaperone concentrations. Proc Natl Acad Sci 115(37):9092–9097. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1810194115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crippa M, Andreghetti D, Capelli R, Tiana G (2021) Evolution of frustrated and stabilising contacts in reconstructed ancient proteins. Eur Biophys J 50(5):699–712. Available from: https://link.springer.com/10.1007/s00249-021-01500-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Newton MS, Arcus VL, Gerth ML, Patrick WM (2018) Enzyme evolution: innovation is easy, optimization is complicated. Curr Opin Struct Biol 48:110–116. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959440X17300982

    Article  CAS  PubMed  Google Scholar 

  8. Mozhaev VV, Martinek K (1982) Inactivation and reactivation of proteins (enzymes). Enzym Microb Technol 4(5):299–309. Available from: https://linkinghub.elsevier.com/retrieve/pii/0141022982900503

    Article  CAS  Google Scholar 

  9. Liu WR, Langer R, Klibanov AM (1991) Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol Bioeng 37(2):177–184. Available from: https://onlinelibrary.wiley.com/doi/10.1002/bit.260370210

    Article  CAS  PubMed  Google Scholar 

  10. Costantino HR, Langer R, Klibanov AM (1995) Aggregation of a lyophilized pharmaceutical protein, recombinant human albumin: effect of moisture and stabilization by excipients. Nat Biotechnol 13(5):493–496. Available from: http://www.nature.com/doifinder/10.1038/nbt0595-493

    Article  CAS  Google Scholar 

  11. Volkin DB, Middaugh CR (1992) The effect of temperature on protein structure. In: Ahern TJ, Manning MC (eds) Stability of protein pharmaceuticals. Part A: Chemical and physical pathways of protein degradation. Plenum, New York, pp 215–247

    Google Scholar 

  12. Hageman MJ (1992) Water sorption and solid-state stability of proteins. In: Ahern TJ, Manning MC (eds) Stability of protein pharmaceuticals. Part A: Chemical and physical pathways of protein degradation. Plenum, New York, pp 273–309

    Google Scholar 

  13. Quax WJ (1993) Thermostable glucose isomerases. Trends Food Sci Technol 4(2):31–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/092422449390056G

    Article  CAS  Google Scholar 

  14. Parsell DA, Sauer RT (1989) The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J Biol Chem 264:7590–7595

    Article  CAS  PubMed  Google Scholar 

  15. Mozhaev VV (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol 11(3):88–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/016777999390057G

    Article  CAS  PubMed  Google Scholar 

  16. Zale SE, Klibanov AM (1983) On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes. Biotechnol Bioeng 25(9):2221–2230. Available from: https://onlinelibrary.wiley.com/doi/10.1002/bit.260250908

    Article  CAS  PubMed  Google Scholar 

  17. Jerne NK, Perry WLM (1956) The stability of biological standards. Bull World Health Organ 14:167–182

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kirkwood TBL (1984) Design and analysis of accelerated degradation tests for the stability of biological standards III. Principles of design. J Biol Stand 12(2):215–224. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092115784800566

    Article  CAS  PubMed  Google Scholar 

  19. Franks F (1994) Accelerated stability testing of bioproducts: attractions and pitfalls. Trends Biotechnol 12(4):114–117. Available from: https://linkinghub.elsevier.com/retrieve/pii/0167779994900876

    Article  CAS  PubMed  Google Scholar 

  20. Baldwin RL, Eisenberg DE (1987) Protein stability. In: Oxender DL, Fox CF (eds) Protein engineering. Alan R Liss, New York, pp 127–148

    Google Scholar 

  21. Pace C (1990) Measuring and increasing protein stability. Trends Biotechnol 8:93–98. Available from: https://linkinghub.elsevier.com/retrieve/pii/016777999090146O

    Article  CAS  PubMed  Google Scholar 

  22. Pace CN (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol 131:266–280

    Article  CAS  PubMed  Google Scholar 

  23. Becktel WJ, Schellman JA (1987) Protein stability curves. Biopolymers 26(11):1859–1877. Available from: https://onlinelibrary.wiley.com/doi/10.1002/bip.360261104

    Article  CAS  PubMed  Google Scholar 

  24. Bramham JE, Podmore A, Davies SA, Golovanov AP (2021) Comprehensive assessment of protein and excipient stability in biopharmaceutical formulations using 1H NMR spectroscopy. ACS Pharmacol Transl Sci 4(1):288–295. Available from: https://pubs.acs.org/doi/10.1021/acsptsci.0c00188

    Article  CAS  PubMed  Google Scholar 

  25. Ren C, Wen X, Mencius J, Quan S (2021) An enzyme-based biosensor for monitoring and engineering protein stability in vivo. Proc Natl Acad Sci 118(13):e2101618118. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.2101618118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng N, Zeng J, Manney A, Williams L, Aubry A-F, Voronin K et al (2016) Quantitation of a PEGylated protein in monkey serum by UHPLC-HRMS using a surrogate disulfide-containing peptide: a new approach to bioanalysis and in vivo stability evaluation of disulfide-rich protein therapeutics. Anal Chim Acta 916:42–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003267016302185

    Article  CAS  PubMed  Google Scholar 

  27. Gregurec D, Velasco-Lozano S, Moya SE, Vázquez L, López-Gallego F (2016) Force spectroscopy predicts thermal stability of immobilized proteins by measuring microbead mechanics. Soft Matter 12(42):8718–8725. Available from: http://xlink.rsc.org/?DOI=C6SM01435F

    Article  CAS  PubMed  Google Scholar 

  28. Aucamp JP, Cosme AM, Lye GJ, Dalby PA (2005) High-throughput measurement of protein stability in microtiter plates. Biotechnol Bioeng 89(5):599–607. Available from: https://onlinelibrary.wiley.com/doi/10.1002/bit.20397

    Article  CAS  PubMed  Google Scholar 

  29. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2(9):2212–2221. Available from: http://www.nature.com/articles/nprot.2007.321

    Article  CAS  PubMed  Google Scholar 

  30. Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR (2008) Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci 105(30):10360–10365. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0805326105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. West GM, Tang L, Fitzgerald MC (2008) Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy. Anal Chem 80(11):4175–4185. Available from: https://pubs.acs.org/doi/10.1021/ac702610a

    Article  CAS  PubMed  Google Scholar 

  32. Dutta S, Koide A, Koide S (2008) High-throughput analysis of the protein sequence–stability landscape using a quantitative yeast surface two-hybrid system and fragment reconstitution. J Mol Biol 382(3):721–733. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022283608008784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoffmann B, Eichmüller C, Steinhauser O, Konrat R (2005) Rapid assessment of protein structural stability and fold validation via NMR. In: Methods in enzymology. Elsevier, pp 142–175. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0076687905940068

    Google Scholar 

  34. Park C, Marqusee S (2005) Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding. Nat Methods 2(3):207–212. Available from: http://www.nature.com/articles/nmeth740

    Article  CAS  PubMed  Google Scholar 

  35. Bo T, Pawliszyn J (2006) Protein thermal stability and phospholipid–protein interaction investigated by capillary isoelectric focusing with whole column imaging detection. J Sep Sci 29(7):1018–1025. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jssc.200500456

    Article  CAS  PubMed  Google Scholar 

  36. Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R (2021) Stabilization of enzymes via immobilization: multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 52:107821. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0734975021001270

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Minasov G, Shoichet BK (2002) Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J Mol Biol 320(1):85–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/S002228360200400X

    Article  CAS  PubMed  Google Scholar 

  38. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2(4):891–903. Available from: http://www.nature.com/articles/nprot.2007.72

    Article  CAS  PubMed  Google Scholar 

  39. Dellus-Gur E, Toth-Petroczy A, Elias M, Tawfik DS (2013) What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs. J Mol Biol 425(14):2609–2621. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022283613002003

    Article  CAS  PubMed  Google Scholar 

  40. Speck J, Hecky J, Tam H-K, Arndt KM, Einsle O, Müller KM (2012) Exploring the molecular linkage of protein stability traits for enzyme optimization by iterative truncation and evolution. Biochemistry 51(24):4850–4867. Available from: https://pubs.acs.org/doi/10.1021/bi2018738

    Article  CAS  PubMed  Google Scholar 

  41. Kurahashi R, Tanaka S, Takano K (2019) Activity-stability trade-off in random mutant proteins. J Biosci Bioeng 128(4):405–409. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1389172319301872

    Article  CAS  PubMed  Google Scholar 

  42. Ota N, Kurahashi R, Sano S, Takano K (2018) The direction of protein evolution is destined by the stability. Biochimie 150:100–109. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0300908418301299

    Article  CAS  PubMed  Google Scholar 

  43. Stimple SD, Smith MD, Tessier PM (2020) Directed evolution methods for overcoming trade-offs between protein activity and stability. AIChE J 66(3):e16814. Available from: https://onlinelibrary.wiley.com/doi/10.1002/aic.16814

    Article  CAS  PubMed  Google Scholar 

  44. Goldsmith M, Aggarwal N, Ashani Y, Jubran H, Greisen P Jr, Ovchinnikov S et al (2017) Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers. Protein Eng Des Sel 30(4):333–345. Available from: https://academic.oup.com/peds/article-lookup/doi/10.1093/protein/gzx003

    Article  CAS  PubMed  Google Scholar 

  45. Rivoire O (2019) Parsimonious evolutionary scenario for the origin of allostery and coevolution patterns in proteins. Phys Rev E 100(3):032411. Available from: https://link.aps.org/doi/10.1103/PhysRevE.100.032411

    Article  CAS  PubMed  Google Scholar 

  46. Geller R, Pechmann S, Acevedo A, Andino R, Frydman J (2018) Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation. Nat Commun 9(1):1781. Available from: http://www.nature.com/articles/s41467-018-04203-x

    Article  PubMed  PubMed Central  Google Scholar 

  47. Finch A, Kim J (2018) Thermophilic proteins as versatile scaffolds for protein engineering. Microorganisms 6(4):97. Available from: http://www.mdpi.com/2076-2607/6/4/97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bornscheuer UT, Hauer B, Jaeger KE, Schwaneberg U (2019) Directed evolution empowered redesign of natural proteins for the sustainable production of chemicals and pharmaceuticals. Angew Chem Int Ed 58(1):36–40. Available from: https://onlinelibrary.wiley.com/doi/10.1002/anie.201812717

    Article  CAS  Google Scholar 

  49. Bunzel HA, Garrabou X, Pott M, Hilvert D (2018) Speeding up enzyme discovery and engineering with ultrahigh-throughput methods. Curr Opin Struct Biol 48:149–156. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959440X17301598

    Article  CAS  PubMed  Google Scholar 

  50. Sheludko YV, Fessner W-D (2020) Winning the numbers game in enzyme evolution – fast screening methods for improved biotechnology proteins. Curr Opin Struct Biol 63:123–133. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959440X20300750

    Article  CAS  PubMed  Google Scholar 

  51. Wittmann BJ, Johnston KE, Wu Z, Arnold FH (2021) Advances in machine learning for directed evolution. Curr Opin Struct Biol 69:11–18. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959440X21000154

    Article  CAS  PubMed  Google Scholar 

  52. Gargiulo S, Soumillion P (2021) Directed evolution for enzyme development in biocatalysis. Curr Opin Chem Biol 61:107–113. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1367593120301587

    Article  CAS  PubMed  Google Scholar 

  53. Lalonde J (2016) Highly engineered biocatalysts for efficient small molecule pharmaceutical synthesis. Curr Opin Biotechnol 42:152–158. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0958166916301318

    Article  CAS  PubMed  Google Scholar 

  54. Trudeau DL, Tawfik DS (2019) Protein engineers turned evolutionists—the quest for the optimal starting point. Curr Opin Biotechnol 60:46–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S095816691830209X

    Article  CAS  PubMed  Google Scholar 

  55. Zakas PM, Brown HC, Knight K, Meeks SL, Spencer HT, Gaucher EA et al (2017) Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat Biotechnol 35(1):35–37. Available from: http://www.nature.com/articles/nbt.3677

    Article  CAS  PubMed  Google Scholar 

  56. Lazarus RA, Scheiflinger F (2017) Mining ancient proteins for next-generation drugs. Nat Biotechnol 35(1):28–29. Available from: http://www.nature.com/articles/nbt.3762

    Article  CAS  PubMed  Google Scholar 

  57. Trudeau DL, Kaltenbach M, Tawfik DS (2016) On the potential origins of the high stability of reconstructed ancestral proteins. Mol Biol Evol 33(10):2633–2641. Available from: https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msw138

    Article  CAS  PubMed  Google Scholar 

  58. Spence MA, Kaczmarski JA, Saunders JW, Jackson CJ (2021) Ancestral sequence reconstruction for protein engineers. Curr Opin Struct Biol 69:131–141. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959440X21000555

    Article  CAS  PubMed  Google Scholar 

  59. Copley SD (2021) Setting the stage for evolution of a new enzyme. Curr Opin Struct Biol 69:41–49. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959440X21000324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goldenzweig A, Goldsmith M, Hill SE, Gertman O, Laurino P, Ashani Y et al (2016) Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol Cell 63(2):337–346. Available from: https://linkinghub.elsevier.com/retrieve/pii/S109727651630243X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jones BJ, Lim HY, Huang J, Kazlauskas RJ (2017) Comparison of five protein engineering strategies for stabilizing an α/β-hydrolase. Biochemistry 56(50):6521–6532. Available from: https://pubs.acs.org/doi/10.1021/acs.biochem.7b00571

    Article  CAS  PubMed  Google Scholar 

  62. Ma H, Ó’Fágáin C, O’Kennedy R (2019) Unravelling enhancement of antibody fragment stability – role of format structure and cysteine modification. J Immunol Methods 464:57–63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022175918302412

    Article  CAS  PubMed  Google Scholar 

  63. Wicke N, Bedford MR, Howarth M (2021) Gastrobodies are engineered antibody mimetics resilient to pepsin and hydrochloric acid. Commun Biol 4(1):960. Available from: https://www.nature.com/articles/s42003-021-02487-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Valderrama B, García-Arellano H, Giansanti S, Baratto MC, Pogni R, Vazquez-Duhalt R et al (2006) Oxidative stabilization of iso-1-cytochrome c by redox-inspired protein engineering. FASEB J 20(8):1233–1235. Available from: https://onlinelibrary.wiley.com/doi/10.1096/fj.05-4173fje

    Article  CAS  PubMed  Google Scholar 

  65. Palmer B, Angus K, Taylor L, Warwicker J, Derrick J (2008) Design of stability at extreme alkaline pH in streptococcal protein G. J Biotechnol 134(3–4):222–230. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168165607017506

    Article  CAS  PubMed  Google Scholar 

  66. Rodriguez-Larrea D, Minning S, Borchert TV, Sanchez-Ruiz JM (2006) Role of solvation barriers in protein kinetic stability. J Mol Biol 360(3):715–724. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022283606005754

    Article  CAS  PubMed  Google Scholar 

  67. Minetti CASA, Remeta DP (2006) Energetics of membrane protein folding and stability. Arch Biochem Biophys 453(1):32–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003986106001196

    Article  CAS  PubMed  Google Scholar 

  68. Chahardahcherik M, Ashrafi M, Ghasemi Y, Aminlari M (2020) Effect of chemical modification with carboxymethyl dextran on kinetic and structural properties of L-asparaginase. Anal Biochem 591:113537. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003269719309054

    Article  CAS  PubMed  Google Scholar 

  69. Kajiwara S, Komatsu K, Yamada R, Matsumoto T, Yasuda M, Ogino H (2019) Improvement of the organic solvent stability of a commercial lipase by chemical modification with dextran. Biochem Eng J 142:1–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1369703X18303978

    Article  CAS  Google Scholar 

  70. Fang X, Wang X, Li G, Zeng J, Li J, Liu J (2018) SS-mPEG chemical modification of recombinant phospholipase C for enhanced thermal stability and catalytic efficiency. Int J Biol Macromol 111:1032–1039. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813017340588

    Article  CAS  PubMed  Google Scholar 

  71. Fujita K (2018) Ionic liquids as stabilization and refolding additives and solvents for proteins. In: Itoh T, Koo Y-M (eds) Application of ionic liquids in biotechnology, Advances in biochemical engineering/biotechnology, vol 168. Springer International Publishing, Cham, pp 215–226

    Chapter  Google Scholar 

  72. Xu C, Suo H, Xue Y, Qin J, Chen H, Hu Y (2021) Experimental and theoretical evidence of enhanced catalytic performance of lipase B from Candida Antarctica acquired by the chemical modification with amino acid ionic liquids. Mol Catal 501:111355. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2468823120306180

    Article  CAS  Google Scholar 

  73. Nwagu TN, Okolo B, Aoyagi H, Yoshida S (2017) Chemical modification with phthalic anhydride and chitosan: viable options for the stabilization of raw starch digesting amylase from Aspergillus carbonarius. Int J Biol Macromol 99:641–647. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813016326599

    Article  CAS  PubMed  Google Scholar 

  74. Riddles PW, Blakeley RL, Zerner B (1983) Reassessment of Ellman’s reagent. Methods Enzymol 91:49–60

    Article  CAS  PubMed  Google Scholar 

  75. Roig MG, Kennedy JF (1992) Perspectives for chemical modifications of enzymes. Crit Rev Biotechnol 12(5–6):391–412. Available from: http://www.tandfonline.com/doi/full/10.3109/07388559209114233

    Article  CAS  Google Scholar 

  76. Riordan JF, Vallee BL (1972) Reactions with N-ethylmaleimide and p-mercuribenzoate. Methods Enzymol 25:449–456

    Article  CAS  PubMed  Google Scholar 

  77. Fields R (1972) The rapid determination of amino groups with TNBS. Methods Enzymol 25:464–468

    Article  CAS  PubMed  Google Scholar 

  78. Inman JK, Perham RN, DuBois GC et al (1983) Amidination. Methods Enzymol 91:559–569

    Article  CAS  PubMed  Google Scholar 

  79. Klapper MH, Klotz IM (1972) Acylation with dicarboxylic acid anhydrides. Methods Enzymol 25:531–536

    Article  CAS  PubMed  Google Scholar 

  80. Jentoft N, Dearborn DG (1983) Protein labeling by reductive alkylation. Methods Enzymol 91:570–579

    Article  CAS  PubMed  Google Scholar 

  81. Yankeelov JA (1972) Modification of arginine by diketones. Methods Enzymol 25:566–579

    Article  CAS  PubMed  Google Scholar 

  82. Pande CS, Pelzig M, Glass JD (1980) Camphorquinoe-10-sulfonic acid and derivatives: convenient reagents for reversible modification of arginine residues. Proc Natl Acad Sci U S A 77:895–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dominici P, Tancini B, Voltattorni CB (1985) Chemical modification of pig kidney 3,4-dihydroxyphenylalanine decarboxylase with diethyl pyrocarbonate. J Biol Chem 260:10583–10589

    Article  CAS  PubMed  Google Scholar 

  84. Carraway KL, Koshland DE (1972) Carbodiimide modification of proteins. Methods Enzymol 25:616–623

    Article  CAS  PubMed  Google Scholar 

  85. Wilcox PE (1972) Esterification. Methods Enzymol 25:596–616

    Article  CAS  PubMed  Google Scholar 

  86. Riordan JF, Vallee BL (1972) Nitration with tetranitromethane. Methods Enzymol 25:515–521

    Article  CAS  PubMed  Google Scholar 

  87. Morrison M (1970) Iodination of tyrosine: isolation of lactoperoxidase (bovine). Methods Enzymol 17:653–660

    Article  Google Scholar 

  88. Spande TF, Witkop B (1967) Determination of the tryptophan content of protein with N-bromosuccinimide. Methods Enzymol 11:498–532

    Article  CAS  Google Scholar 

  89. Neumann NP (1972) Oxidation with hydrogen peroxide. Methods Enzymol 25:393–401

    Article  CAS  PubMed  Google Scholar 

  90. Lundblad RL (2005) Chemical reagents for protein modification, 3rd edn. CRC Press, Boca Raton, 339 p

    Google Scholar 

  91. Lundblad RL (2009) Application of solution protein chemistry to biotechnology. Taylor & Francis/CRC Press, Boca Raton

    Book  Google Scholar 

  92. Lundblad RL (2006) The evolution from protein chemistry to proteomics: basic science to clinical application. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  93. Wong SS, Wong L-JC (1992) Chemical crosslinking and the stabilization of proteins and enzymes. Enzym Microb Technol 14(11):866–874. Available from: https://linkinghub.elsevier.com/retrieve/pii/014102299290049T

    Article  CAS  Google Scholar 

  94. Means GE, Feeney RE (1990) Chemical modifications of proteins: history and applications. Bioconjug Chem 1(1):2–12. Available from: https://pubs.acs.org/doi/abs/10.1021/bc00001a001

    Article  CAS  PubMed  Google Scholar 

  95. Hirs CHW, Timasheff SN (eds) (1972) Methods in enzymology, vol 25. Academic Press, New York

    Google Scholar 

  96. Hirs CHW, Timasheff SN (eds) (1983) Methods in enzymology, vol 91. Academic Press, New York

    Google Scholar 

  97. Jeong WH, Lee H, Song DH, Eom J-H, Kim SC, Lee H-S et al (2016) Connecting two proteins using a fusion alpha helix stabilized by a chemical cross linker. Nat Commun 7(1):11031. Available from: http://www.nature.com/articles/ncomms11031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shemsi AM, Khanday FA, Qurashi A, Khalil A, Guerriero G, Siddiqui KS (2019) Site-directed chemically-modified magnetic enzymes: fabrication, improvements, biotechnological applications and future prospects. Biotechnol Adv 37(3):357–381. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0734975019300138

    Article  CAS  PubMed  Google Scholar 

  99. More KN, Lim T-H, Kang J, Chang D-J (2021) A fluorogenic assay: analysis of chemical modification of lysine and arginine to control proteolytic activity of trypsin. Molecules 26(7):1975. Available from: https://www.mdpi.com/1420-3049/26/7/1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Krause ME, Sahin E (2019) Chemical and physical instabilities in manufacturing and storage of therapeutic proteins. Curr Opin Biotechnol 60:159–167. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0958166918301381

    Article  CAS  PubMed  Google Scholar 

  101. Van den Burg B, Vriend G, Veltman OR, Venema G, Eijsink VGH (1998) Engineering an enzyme to resist boiling. Proc Natl Acad Sci 95(5):2056–2060. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.95.5.2056

    Article  PubMed  PubMed Central  Google Scholar 

  102. Atiroğlu V, Atiroğlu A, Özacar M (2021) Immobilization of α-amylase enzyme on a protein @metal–organic framework nanocomposite: a new strategy to develop the reusability and stability of the enzyme. Food Chem 349:129127. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814621001291

    Article  PubMed  Google Scholar 

  103. Wullich SC, Wijma HJ, Janssen DB, Fetzner S (2021) Stabilizing AqdC, a Pseudomonas quinolone signal-cleaving dioxygenase from mycobacteria, by FRESCO-based protein engineering. Chembiochem 22(4):733–742. Available from: https://onlinelibrary.wiley.com/doi/10.1002/cbic.202000641

    Article  CAS  PubMed  Google Scholar 

  104. Dotsenko AS, Rozhkova AM, Zorov IN, Sinitsyn AP (2020) Protein surface engineering of endoglucanase Penicillium verruculosum for improvement in thermostability and stability in the presence of 1-butyl-3-methylimidazolium chloride ionic liquid. Bioresour Technol 296:122370. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960852419316001

    Article  CAS  PubMed  Google Scholar 

  105. Shivange AV, Hoeffken HW, Haefner S, Schwaneberg U (2016) Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution. BioTechniques 61(6):305–314. Available from: https://www.future-science.com/doi/10.2144/000114483

    Article  CAS  PubMed  Google Scholar 

  106. Shivange AV, Roccatano D, Schwaneberg U (2016) Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Appl Microbiol Biotechnol 100(1):227–242. Available from: http://link.springer.com/10.1007/s00253-015-6959-5

    Article  CAS  PubMed  Google Scholar 

  107. Masakari Y, Hara C, Araki Y, Gomi K, Ito K (2020) Improvement in the thermal stability of Mucor prainii-derived FAD-dependent glucose dehydrogenase via protein chimerization. Enzym Microb Technol 132:109387. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141022919301255

    Article  CAS  Google Scholar 

  108. Badoei-dalfard A, Khajeh K, Karami Z (2020) Protein engineering of a metalloprotease in order to improve organic solvents stability and activity. Catal Lett 150(5):1219–1229. Available from: http://link.springer.com/10.1007/s10562-019-03044-7

    Article  CAS  Google Scholar 

  109. Abdul Wahab MKH, El-Enshasy HA, Bakar FDA, Murad AMA, Jahim JM, Illias RM (2019) Improvement of cross-linking and stability on cross-linked enzyme aggregate (CLEA)-xylanase by protein surface engineering. Process Biochem 86:40–49. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359511319305719

    Article  CAS  Google Scholar 

  110. Shah V, Charlton T, Kim JR (2018) Laboratory evolution of Bacillus circulans xylanase inserted into Pyrococcus furiosus maltodextrin-binding protein for increased xylanase activity and thermal stability toward alkaline pH. Appl Biochem Biotechnol 184(4):1232–1246. Available from: http://link.springer.com/10.1007/s12010-017-2619-9

    Article  CAS  PubMed  Google Scholar 

  111. Shah V, Pierre B, Kirtadze T, Shin S, Kim JR (2017) Stabilization of Bacillus circulans xylanase by combinatorial insertional fusion to a thermophilic host protein. Protein Eng Des Sel 30(4):281–290. Available from: https://academic.oup.com/peds/article-lookup/doi/10.1093/protein/gzw081

    CAS  PubMed  Google Scholar 

  112. Blažić M, Balaž AM, Tadić V, Draganić B, Ostafe R, Fischer R et al (2019) Protein engineering of cellobiose dehydrogenase from Phanerochaete chrysosporium in yeast Saccharomyces cerevisiae InvSc1 for increased activity and stability. Biochem Eng J 146:179–185. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1369703X1930110X

    Article  Google Scholar 

  113. Robinson MJ, Matejtschuk P, Longstaff C, Dalby PA (2019) Selective stabilization and destabilization of protein domains in tissue-type plasminogen activator using formulation excipients. Mol Pharm 16(2):744–755. Available from: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.8b01024

    Article  CAS  PubMed  Google Scholar 

  114. Morgenstern J, Gil Alvaradejo G, Bluthardt N, Beloqui A, Delaittre G, Hubbuch J (2018) Impact of polymer bioconjugation on protein stability and activity investigated with discrete conjugates: alternatives to PEGylation. Biomacromolecules 19(11):4250–4262. Available from: https://pubs.acs.org/doi/10.1021/acs.biomac.8b01020

    Article  CAS  PubMed  Google Scholar 

  115. Fernandez-Lopez L, Pedrero SG, Lopez-Carrobles N, Gorines BC, Virgen-Ortíz JJ, Fernandez-Lafuente R (2017) Effect of protein load on stability of immobilized enzymes. Enzym Microb Technol 98:18–25. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141022916302538

    Article  CAS  Google Scholar 

  116. Grigoletto A, Mero A, Yoshioka H, Schiavon O, Pasut G (2017) Covalent immobilisation of transglutaminase: stability and applications in protein PEGylation. J Drug Target 25(9–10):856–864. Available from: https://www.tandfonline.com/doi/full/10.1080/1061186X.2017.1363211

    Article  CAS  PubMed  Google Scholar 

  117. Shamsi M, Shirdel SA, Jafarian V, Jafari SS, Khalifeh K, Golestani A (2016) Optimization of conformational stability and catalytic efficiency in chondroitinase ABC Ι by protein engineering methods. Eng Life Sci 16(8):690–696. Available from: https://onlinelibrary.wiley.com/doi/10.1002/elsc.201600034

    Article  CAS  Google Scholar 

  118. Gao Y, Li J-J, Zheng L, Du Y (2017) Rational design of Pleurotus eryngii versatile ligninolytic peroxidase for enhanced pH and thermal stability through structure-based protein engineering. Protein Eng Des Sel 30(11):743–751. Available from: https://academic.oup.com/peds/article/30/11/743/4583659

    Article  CAS  PubMed  Google Scholar 

  119. Sahare P, Ayala M, Vazquez-Duhalt R, Pal U, Loni A, Canham LT et al (2016) Enhancement of peroxidase stability against oxidative self-inactivation by co-immobilization with a redox-active protein in mesoporous silicon and silica microparticles. Nanoscale Res Lett 11(1):417. Available from: http://nanoscalereslett.springeropen.com/articles/10.1186/s11671-016-1605-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Patel SN, Sharma M, Lata K, Singh U, Kumar V, Sangwan RS et al (2016) Improved operational stability of d-psicose 3-epimerase by a novel protein engineering strategy, and d-psicose production from fruit and vegetable residues. Bioresour Technol 216:121–127. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960852416306939

    Article  CAS  PubMed  Google Scholar 

  121. Li Y, Zhang L, Ding Z, Gu Z, Shi G (2016) Engineering of isoamylase: improvement of protein stability and catalytic efficiency through semi-rational design. J Ind Microbiol Biotechnol 43(1):3–12. Available from: https://academic.oup.com/jimb/article/43/1/3/5995978

    Article  CAS  PubMed  Google Scholar 

  122. Xu Q, Hou J, Rao J, Li G-H, Liu Y-L, Zhou J (2020) PEG modification enhances the in vivo stability of bioactive proteins immobilized on magnetic nanoparticles. Biotechnol Lett 42(8):1407–1418. Available from: http://link.springer.com/10.1007/s10529-020-02867-4

    Article  CAS  PubMed  Google Scholar 

  123. Xu R, Teng Z, Wang Q (2016) Development of tyrosinase-aided crosslinking procedure for stabilizing protein nanoparticles. Food Hydrocoll 60:324–334. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0268005X1630145X

    Article  CAS  Google Scholar 

  124. Kwon H, Young PG, Squire CJ, Baker EN (2017) Engineering a Lys-Asn isopeptide bond into an immunoglobulin-like protein domain enhances its stability. Sci Rep 7(1):42753. Available from: http://www.nature.com/articles/srep42753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yamazoe H (2019) Antibody immobilization technique using protein film for high stability and orientation control of the immobilized antibody. Mater Sci Eng C 100:209–214. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493118314711

    Article  CAS  Google Scholar 

  126. Deepankumar K, Prabhu NS, Kim J-H, Yun H (2017) Protein engineering for covalent immobilization and enhanced stability through incorporation of multiple noncanonical amino acids. Biotechnol Bioprocess Eng 22(3):248–255. Available from: http://link.springer.com/10.1007/s12257-017-0127-y

    Article  CAS  Google Scholar 

  127. Nisthal A, Wang CY, Ary ML, Mayo SL (2019) Protein stability engineering insights revealed by domain-wide comprehensive mutagenesis. Proc Natl Acad Sci 116(33):16367–16377. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1903888116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Georgoulis A, Louka M, Mylonas S, Stavros P, Nounesis G, Vorgias CE (2020) Consensus protein engineering on the thermostable histone-like bacterial protein HUs significantly improves stability and DNA binding affinity. Extremophiles 24(2):293–306. Available from: http://link.springer.com/10.1007/s00792-020-01154-4

    Article  CAS  PubMed  Google Scholar 

  129. Waltenspühl Y, Jeliazkov JR, Kummer L, Plückthun A (2021) Directed evolution for high functional production and stability of a challenging G protein-coupled receptor. Sci Rep 11(1):8630. Available from: http://www.nature.com/articles/s41598-021-87793-9

    Article  PubMed  PubMed Central  Google Scholar 

  130. Smith AK, Soltani M, Wilkerson JW, Timmerman BD, Zhao EL, Bundy BC et al (2021) Coarse-grained simulation of PEGylated and tethered protein devices at all experimentally accessible surface residues on β-lactamase for stability analysis and comparison. J Chem Phys 154(7):075102. Available from: https://aip.scitation.org/doi/10.1063/5.0032019

    Article  CAS  PubMed  Google Scholar 

  131. Minshawi F, Lanvermann S, McKenzie E, Jeffery R, Couper K, Papoutsopoulou S et al (2020) The generation of an engineered interleukin-10 protein with improved stability and biological function. Front Immunol 11:1794. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2020.01794/full

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chang PK, Prestidge CA, Barnes TJ, Bremmell KE (2016) Impact of PEGylation and non-ionic surfactants on the physical stability of the therapeutic protein filgrastim (G-CSF). RSC Adv 6(82):78970–78978. Available from: http://xlink.rsc.org/?DOI=C6RA16254A

    Article  CAS  Google Scholar 

  133. Sullivan JT, Sulli C, Nilo A, Yasmeen A, Ozorowski G, Sanders RW et al (2017) High-throughput protein engineering improves the antigenicity and stability of soluble HIV-1 envelope glycoprotein SOSIP trimers. García-Sastre A, editor. J Virol 91(22):e00862-17. Available from: https://journals.asm.org/doi/10.1128/JVI.00862-17

    Article  PubMed  PubMed Central  Google Scholar 

  134. Liu Q, Li L, Yang L, Liu T, Cai C, Liu B (2016) Modification of the sweetness and stability of sweet-tasting protein monellin by gene mutation and protein engineering. Biomed Res Int 2016:1–7. Available from: http://www.hindawi.com/journals/bmri/2016/3647173/

    Article  Google Scholar 

  135. Bowling AJ, Sopko MS, Tan SY, Larsen CM, Pence HE, Zack MD (2019) Insecticidal activity of a Vip3Ab1 chimera is conferred by improved protein stability in the midgut of Spodoptera eridania. Toxins 11(5):276. Available from: https://www.mdpi.com/2072-6651/11/5/276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wu X, Liu Y, Liu A, Wang W (2017) Improved thermal-stability and mechanical properties of type I collagen by crosslinking with casein, keratin and soy protein isolate using transglutaminase. Int J Biol Macromol 98:292–301. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813016327684

    Article  CAS  PubMed  Google Scholar 

  137. Wu X, Liu A, Wang W, Ye R (2018) Improved mechanical properties and thermal-stability of collagen fiber based film by crosslinking with casein, keratin or SPI: effect of crosslinking process and concentrations of proteins. Int J Biol Macromol 109:1319–1328. Available from: https://linkinghub.elsevier.com/retrieve/pii/S014181301732843X

    Article  CAS  PubMed  Google Scholar 

  138. Rasekh B, Khajeh K, Ranjbar B, Mollania N, Almasinia B, Tirandaz H (2014) Protein engineering of laccase to enhance its activity and stability in the presence of organic solvents. Eng Life Sci 14(4):442–448. Available from: https://onlinelibrary.wiley.com/doi/10.1002/elsc.201300042

    Article  CAS  Google Scholar 

  139. Bao X, Huang X, Lu X, Li J-J (2014) Improvement of hydrogen peroxide stability of Pleurotus eryngii versatile ligninolytic peroxidase by rational protein engineering. Enzym Microb Technol 54:51–58. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141022913002068

    Article  Google Scholar 

  140. Lamazares E, Clemente I, Bueno M, Velázquez-Campoy A, Sancho J (2015) Rational stabilization of complex proteins: a divide and combine approach. Sci Rep 5(1):9129. Available from: http://www.nature.com/articles/srep09129

    Article  PubMed  PubMed Central  Google Scholar 

  141. Fulton A, Frauenkron-Machedjou VJ, Skoczinski P, Wilhelm S, Zhu L, Schwaneberg U et al (2015) Exploring the protein stability landscape: Bacillus subtilis lipase a as a model for detergent tolerance. Chembiochem 16(6):930–936. Available from: https://onlinelibrary.wiley.com/doi/10.1002/cbic.201402664

    Article  CAS  PubMed  Google Scholar 

  142. Dror A, Shemesh E, Dayan N, Fishman A (2014) Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Appl Environ Microbiol 80(4):1515–1527. Available from: https://journals.asm.org/doi/10.1128/AEM.03371-13

    Article  PubMed  PubMed Central  Google Scholar 

  143. Yong KJ, Scott DJ (2015) Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS). Biotechnol Bioeng 112(3):438–446. Available from: https://onlinelibrary.wiley.com/doi/10.1002/bit.25451

    Article  CAS  PubMed  Google Scholar 

  144. Lindgren J, Karlström AE (2014) Intramolecular thioether crosslinking of therapeutic proteins to increase proteolytic stability. Chembiochem 15(14):2132–2138. Available from: https://onlinelibrary.wiley.com/doi/10.1002/cbic.201400002

    Article  CAS  PubMed  Google Scholar 

  145. Usharani N, Jayakumar GC, Kanth SV, Rao JR (2014) Stabilization of collagen through bioconversion: an insight in protein–protein interaction. Case DA, editor. Biopolymers 101(8):903–911. Available from: https://onlinelibrary.wiley.com/doi/10.1002/bip.22473

    Article  CAS  PubMed  Google Scholar 

  146. Lawrence PB, Gavrilov Y, Matthews SS, Langlois MI, Shental-Bechor D, Greenblatt HM et al (2014) Criteria for selecting PEGylation sites on proteins for higher thermodynamic and proteolytic stability. J Am Chem Soc 136(50):17547–17560. Available from: https://pubs.acs.org/doi/10.1021/ja5095183

    Article  CAS  PubMed  Google Scholar 

  147. Pandey BK, Smith MS, Price JL (2014) Cysi – Lysi+3 – Lysi+4 triad: a general approach for PEG-based stabilization of α-helical proteins. Biomacromolecules 15(12):4643–4647. Available from: https://pubs.acs.org/doi/10.1021/bm501546k

    Article  CAS  PubMed  Google Scholar 

  148. Ma H, Ó’Fágáin C, O’Kennedy R (2020) Antibody stability: a key to performance – analysis, influences and improvement. Biochimie 177:213–225. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0300908420302054

    Article  CAS  PubMed  Google Scholar 

  149. Liu Q, Xun G, Feng Y (2019) The state-of-the-art strategies of protein engineering for enzyme stabilization. Biotechnol Adv 37(4):530–537. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0734975018301745

    Article  PubMed  Google Scholar 

  150. Acevedo-Rocha CG, Reetz MT, Nov Y (2015) Economical analysis of saturation mutagenesis experiments. Sci Rep 5(1):10654. Available from: http://www.nature.com/articles/srep10654

    Article  PubMed  PubMed Central  Google Scholar 

  151. Cicerone MT, Pikal MJ, Qian KK (2015) Stabilization of proteins in solid form. Adv Drug Deliv Rev 93:14–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X1500099X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Balcão VM, Vila MMDC (2015) Structural and functional stabilization of protein entities: state-of-the-art. Adv Drug Deliv Rev 93:25–41. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X14002130

    Article  PubMed  Google Scholar 

  153. Suplatov D (2015) Robust enzyme design: bioinformatic tools for improved protein stability. Biotechnol J 10:344–355

    Article  CAS  PubMed  Google Scholar 

  154. Pearson JT, Rock DA (2015) Bioanalytical approaches to assess the proteolytic stability of therapeutic fusion proteins. Bioanalysis 7(23):3035–3051. Available from: https://www.future-science.com/doi/10.4155/bio.15.217

    Article  CAS  PubMed  Google Scholar 

  155. Wang W, Ignatius AA, Thakkar SV (2014) Impact of residual impurities and contaminants on protein stability. J Pharm Sci 103(5):1315–1330. Available from: https://linkinghub.elsevier.com/retrieve/pii/S002235491530602X

    Article  CAS  PubMed  Google Scholar 

  156. Patel R, Kumari M, Khan AB (2014) Recent advances in the applications of ionic liquids in protein stability and activity: a review. Appl Biochem Biotechnol 172(8):3701–3720. Available from: http://link.springer.com/10.1007/s12010-014-0813-6

    Article  CAS  PubMed  Google Scholar 

  157. Chaudhuri R, Cheng Y, Middaugh CR, Volkin DB (2014) High-throughput biophysical analysis of protein therapeutics to examine interrelationships between aggregate formation and conformational stability. AAPS J 16(1):48–64. Available from: http://link.springer.com/10.1208/s12248-013-9539-6

    Article  CAS  PubMed  Google Scholar 

  158. Hernández-Ruiz J, Arnao MB, Hiner ANP, García-Cánovas F, Acosta M (2001) Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2. Biochem J 354(1):107–114. Available from: https://portlandpress.com/biochemj/article/354/1/107/90287/Catalase-like-activity-of-horseradish-peroxidase

    Article  PubMed  PubMed Central  Google Scholar 

  159. Arnold FH, Lin Z (2000) Expression of functional eukaryotic proteins. Worldw Pat PCTUS9917127. WO 00/006718

    Google Scholar 

  160. Hiner ANP, Hernandez-Ruiz J, Garcia-Canovas F, Smith AT, Arnao MB, Acosta M (1995) A comparative study of the inactivation of wild-type, recombinant and two mutant horseradish peroxidase isoenzymes C by hydrogen peroxide and m-chloroperoxybenzoic acid. Eur J Biochem 234(2):506–512. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1432-1033.1995.506_b.x

    Article  CAS  PubMed  Google Scholar 

  161. Sadana A (1988) Enzyme deactivation. Biotechnol Adv 6(3):349–446. Available from: https://linkinghub.elsevier.com/retrieve/pii/0734975088918903

    Article  CAS  PubMed  Google Scholar 

  162. Wold F (1972) Bifunctional reagents. Methods Enzymol 25:623–651

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciarán Ó’Fágáin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ó’Fágáin, C. (2023). Protein Stability: Enhancement and Measurement. In: Loughran, S.T., Milne, J.J. (eds) Protein Chromatography. Methods in Molecular Biology, vol 2699. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3362-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3362-5_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3361-8

  • Online ISBN: 978-1-0716-3362-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics