Skip to main content
Log in

Regulation of photorespiration in C3 and C4 species

  • Published:
The Botanical Review Aims and scope Submit manuscript

Summary

Photorespiration is a light-stimulated oxidation of photosynthesis intermediates to CO2. This process occurs primarily in higher plants which fix CO2 via the C3 pathway of photosynthesis (Calvin cycle). The details of the mechanism of photorespiration are controversial, but glycolic acid metabolism is thought to be involved. Photorespiration appears to be a wasteful process, and net photosynthesis at atmospheric CO2 concentration can be increased by approximately 50% by stopping photorespiration and an associated oxygen inhibition of photosynthesis. Since most crop species fix CO2 by the C3 pathway, control of photorespiration represents a major opportunity for increasing crop productivity. Photorespiration is not readily detected in a second group of higher plants, the C4 species. C4 plants have solved the problem of photorespiration through the evolution of a specialized leaf anatomy and compartmented enzyme complement, which act to reduce glycolic acid biosynthesis and to recapture photorespiratory CO2 before it can exit from the leaf. However, breeding experiments indicate that it will be difficult, if not impossible, to transform photorespiratory C3 species into non-photorespiratory C4 species. Control of photorespiration in C3 species will have to be achieved by isolating photorespiratory-deficient mutants of C3 plants or by identifying chemical compounds that specifically inhibit photorespiratory metabolism.

Zusammenfassung

Lichtatmung ist eine durch Licht geförderte Oxydation von Zwischenprodukten der Photosynthese zu CO2. Dieser Prozess spielt sich hauptsächlich in höheren Pflanzen ab, die CO2 über den C3-Weg der Photosynthese fixieren (Calvin Cyclus). Der genaue Mechanismus der Lichtatmung ist umstritten, aber es wird angenommen, dass der Glykolsäure-Stoffwechsel dabei eine Rolle spielt. Die Lichtatmung ist ein unwirtschaftlicher Prozess, und die reine Photosynthese bei atmosphärischen CO2 Konzentrationen kann um etwa 50% erhöht werden, wenn die Lichtatmung und die damit verbundene Sauerstoffhemmung der Photosynthese unterbunden wird. Da die meisten Nutzpflanzen CO2 auf dem C3-Weg fixieren, stellt eine Einschränkung der Lichtatmung eine wichtige Möglichkeit der Erhöhung der Produktivität von Nutzpflanzen dar. Bei einer zweiten Gruppe von höheren Pflanzen, den C4-Arten, kann die Lichtatmung nicht so leicht nachgewiesen werden. C4-Pflanzen haben das Problem der Lichtatmung durch Ausbildung einer speziellen Blattanatomie und eines getrennten Enzym-Komplements gelöst, das die Glykolsäurebiosynthese verringert und das CO2 der Lichtatmung bindet, bevor dieses das Blatt verlässt. Zuchtexperimente haben allerdings gezeigt, dass es schwierig wenn nicht unmöglich sein wird, lichtatmende C3-Arten in nicht lichtatmende C4 -Arten umzuwandeln. Eine Einschränkung der Lichtatmung in C3 -Arten wird durch Isolierung von lichtatmungsarmen Mutanten von C3-Arten erfolgen müssen, oder durch die Identifizierung von chemischen Verbindungen, die den Lichtatmungsstoffwechsel spezifisch hemmen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RuDP:

ribulose-1,5-diphosphate

3-PGA:

3-phosphoglycerate

DHETPP:

1,2-dihydroxyethylthiamine pyrophosphate

TPP:

thiamine pyrophosphate

NADP+ (NADPH):

oxidized (reduced) form of nicotinamide adenine dinucleotide phosphate

NAD+ (NADH):

oxidized (reduced) form of nicotinamide adenine dinucleotide

Pi :

orthophosphate

ADP:

adenosine-5′-diphosphate

ATP:

adenosine-5′-triphosphate

F6P:

fructose-6-phosphate

C1-THFA:

formyltetrahydrofolate

a-HPMS:

α-hydroxy-2-pyridine-methanesulfonate

OAA:

oxaloacetate

PEP:

phospho(enol)pyruvate

MAL:

malate

ASP:

aspartate

PYR:

pyruvate

Ga3P:

glyceraldehyde-3-phosphate

Literature Cited

  • Andrews, T. J., G. H. Lorimer, and N. E. Tolbert. 1971. Incorporation of molecular oxygen into glycine and serine during photorespiration in spinach leaves. Biochemistry10: 4777–4782.

    Article  PubMed  CAS  Google Scholar 

  • ———. 1973. Ribulose diphosphate oxygenase. I. Synthesis of phospho-glycolate by fraction-1 protein of leaves. Biochemistry12: 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Badger, M. R., and T. J. Andrews. 1974. Effects of CO2, O2 and temperature on a high-affinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochem. Biophys. Res. Commun.60: 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Bahr, J. T., and R. G. Jensen. 1974. Ribulose bisphosphate oxygenase activity from freshly ruptured spinach chloroplasts. Arch. Biochem. Biophys.164: 408–413.

    Article  PubMed  CAS  Google Scholar 

  • Baldry, C. W., C. Bucke, and J. Coombs. 1971. Progressive release of carboxylating enzymes during mechanical grinding of sugarcane leaves. Planta97: 310–319.

    Article  CAS  Google Scholar 

  • Bassham, J. A., and M. Calvin. 1957. The path of carbon in photosynthesis. Prentice-Hall, Englewood Cliffs, New Jersey. 104 pp.

    Google Scholar 

  • —, and M. Kirk. 1962. The effect of oxygen on the reduction of CO2 to glycolic acid and other products during photosynthesis byChlorella. Biochem. Biophys. Res. Commun.9: 376–380.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1973. Sequence of formation of phosphoglycolate and glycolate in photosynthesizingChlorella pyrenoidosa. Pl. Physiol.52: 407–411.

    CAS  Google Scholar 

  • —, P. Sharp, and I. Morris. 1968. The effect of Mg2+ concentration on the pH optimum and Michaelis constants of spinach chloroplast ribulosediphosphate carboxylase (carboxydismutase). Biochim. Biophys. Acta153: 898–900.

    Article  PubMed  CAS  Google Scholar 

  • Berry, J. A. 1971. The compartmentation of reactions inβ-carboxylation photosynthesis. Carnegie Inst. Washington Year Book69: 649–655.

    Google Scholar 

  • Beuerlein, J. E., and J. W. Pendleton. 1971. Photosynthetic rates and light saturation curves of individual soybean leaves under field conditions. Crop Sci.11: 217–219.

    Article  Google Scholar 

  • Bird, I. F., M. J. Cornelius, A. J. Keys, and C. P. Whittingham. 1972a. Oxidation and phosphorylation associated with the conversion of glycine to serine. Phytochemistry11: 1587–1594.

    Article  CAS  Google Scholar 

  • ————. 1972b. Adenosine triphosphate synthesis and the natural electron acceptor for synthesis of serine from glycine in leaves. Biochem. J.128: 191–192.

    PubMed  CAS  Google Scholar 

  • Bisalputra, T., W. J. S. Downton, and E. B. Tregunna. 1969. The distribution and ultrastructure of chloroplasts in leaves differing in photosynthetic carbon metabolism. I. Wheat,Sorghum, andAristida (Gramineae). Canad. J. Bot.47: 15–21.

    CAS  Google Scholar 

  • Björkman, O. 1973. Comparative studies on photosynthesis in higher plants. Photophysiol.8: 1–63.

    Google Scholar 

  • —, and J. Berry. 1973. High-efficiency photosynthesis. Sci. Amer.229: 80–93.

    Article  Google Scholar 

  • —, E. Gauhl, and M. A. Nobs. 1970. Comparative studies ofAtriplex species with and without β -carboxylation photosynthesis and their first-generation hybrid. Carnegie Inst. Washington Year Book68: 620–633.

    Google Scholar 

  • —, W. M. Hiesey, M. Nobs, F. Nicholson, and R. W. Hart. 1968. Effect of oxygen concentration on dry matter production in higher plants. Carnegie Inst. Washington Year Book66: 228–232.

    Google Scholar 

  • —, M. Nobs, R. Pearcy, J. Boynton, and J. Berry. 1971a. Characteristics of hybrids between C3 and C4 species ofAtriplex. In: Photosynthesis and photorespiration, ed. by M. D. Hatch, C. B. Osmond, and R. O. Slatyer. Wiley-Interscience, New York. pp. 105–119.

    Google Scholar 

  • —, R. W. Pearcy, and M. A. Nobs. 1971b. Hybrids betweenAtriplex species with and without β -carboxylation photosynthesis. Photosynthesis characteristics. Carnegie Inst. Washington Year Book69: 640–648.

    Google Scholar 

  • ——, A. T. Harrison, and H. Mooney. 1972. Photosynthetic adaptation to high temperatures: a field study in Death Valley, California. Science175: 786–789.

    Article  PubMed  Google Scholar 

  • Black, C. C. 1971. Ecological implications of dividing plants into groups with distinct photosynthetic production capacities. Advances Ecol. Res.7: 87–114.

    Google Scholar 

  • —. 1973. Photosynthetic carbon fixation in relation to net CO2 uptake. Annual Rev. Pl. Physiol.24: 253–286.

    Article  CAS  Google Scholar 

  • —, and H. H. Mollenhauer. 1971. Structure and distribution of chloroplasts and other organelles in leaves with various rates of photosynthesis. Pl. Physiol.47: 15–23.

    CAS  Google Scholar 

  • Bowes, G., and J. A. Berry. 1972. The effect of oxygen on photosynthesis and glycolate excretion inChlamydomonas reinhardtii. Carnegie Inst. Washington Year Book71: 148–158.

    Google Scholar 

  • —, and W. L. Ogren. 1972. O2 inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. J. Biol. Chem.247: 2171–2176.

    PubMed  CAS  Google Scholar 

  • ——, and R. H. Hageman. 1971. Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun.45: 716–722.

    Article  PubMed  CAS  Google Scholar 

  • ———. 1972. Light saturation, photosynthesis rate, RuDP carboxylase activity, and specific leaf weight in soybeans grown under different light intensities. Crop Sci.12: 77–79.

    Article  CAS  Google Scholar 

  • Brown, D. L., and E. B. Tregunna. 1967. Inhibition of respiration during photosynthesis by some algae. Canad. J. Bot.45: 1135–1143.

    Article  Google Scholar 

  • Brown, R. H., and V. E. Gracen. 1972. Distribution of the post-illumination CO2 burst among grasses. Crop Sci.12: 30–33.

    Article  Google Scholar 

  • Brown, W. V. 1974. Another cytological difference among the Kranz sub-families of the Gramineae. Bull. Torrey Bot. Club101: 120–124.

    Article  Google Scholar 

  • —, and B. N. Smith. 1972. Grass evolution, the Kranz syndrome,13C/12C ratios, and continental drift. Nature239: 345–346.

    Article  PubMed  CAS  Google Scholar 

  • Bruin, W. J., E. B. Nelson, and N. E. Tolbert. 1970. Glycolate pathway in green algae. Pl. Physiol.46: 386–391.

    CAS  Google Scholar 

  • Buchanan, B. B., and P. Schürmann. 1973. Regulation of ribulose 1,5-diphosphate carboxylase in the photosynthetic assimilation of carbon dioxide. J. Biol. Chem.248: 4956–4964.

    PubMed  CAS  Google Scholar 

  • Bucke, C., and S. P. Long. 1971. Release of carboxylating enzymes from maize and sugarcane leaf tissue during progressive grinding. Planta99: 199–210.

    Article  CAS  Google Scholar 

  • ——. 1972. Location of enzymes assimilating and shuttling carbon dioxide in sugarcane and maize leaf tissue. In: Proc. of the IInd International Congress on Photosyn. Res., Volume 3, ed. by G. Forti, M. Avron, and A. Melandri. Dr. W. Junk N. V. Publ., the Hague. pp. 1935–1941.

    Google Scholar 

  • Cannell, R. Q., W. A. Brun, and D. N. Moss. 1969. A search for high net photosynthetic rate among soybean genotypes. Crop Sci.9: 840–841.

    Article  Google Scholar 

  • Canvin, D. T., and H. Fock. 1972. Measurement of photorespiration. Methods in Enzymol.24: 246–260.

    CAS  Google Scholar 

  • Carlson, G. E., R. B. Pearce, D. R. Lee, and R. H. Hart. 1971. Photosynthesis and photorespiration in two clones of orchardgrass. Crop Sci.11: 35–37.

    Article  Google Scholar 

  • Carolin, R. C., S. W. L. Jacobs, and M. Vesk. 1973. The structure of the cells of the mesophyll and parenchymatous bundle sheath of the Gramineae. Bot. J. Linn. Soc.66: 259–275.

    Google Scholar 

  • Chapman, F. A., and D. Graham. 1974. The effect of light on the tricarboxylic acid cycle in green leaves. I. Relative rates of the cycle in the dark and the light. Pl. Physiol.53: 879–885.

    CAS  Google Scholar 

  • Chen, T. M., R. H. Brown, and C. C. Black. 1970. CO2 compensation concentration, rate of photosynthesis, and carbonic anhydrase activity of plants. Weed Sci.18: 399–403.

    CAS  Google Scholar 

  • —, W. H. Campbell, P. Dittrich, and C. C. Black. 1973. Distribution of carboxylation and decarboxylation enzymes in isolated mesophyll cells and bundle sheath strands of C4 plants. Biochem. Biophys. Res. Commun.51: 461–467.

    Article  PubMed  CAS  Google Scholar 

  • —, P. Dittrich, W. H. Campbell, and C. C. Black. 1974. Metabolism of epidermal tissues, mesophyll cells, and bundle sheath strands resolved from mature nutsedge leaves. Arch. Biochem. Biophys.163: 246–262.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, K. H., and B. Colman. 1974. Measurements of photorespiration in some microscopic algae. Planta115: 207–212.

    Article  CAS  Google Scholar 

  • Chollet, R. 1973. The effect of O2 on14CO2 fixation in mesophyll cells isolated fromDigitaria sanguinalis (L.) Scop. leaves. Biochem. Biophys. Res. Commun.55: 850–856.

    Article  PubMed  CAS  Google Scholar 

  • —. 1974.14CO2 fixation and glycolate metabolism in the dark in isolated maize (Zea mays L.) bundlè sheath strands. Arch. Biochem. Biophys.163: 521–529.

    Article  PubMed  CAS  Google Scholar 

  • —, and W. L. Ogren. 1972a. O2 inhibits maize bundle sheath photosynthesis. Biochem. Biophys. Res. Commun.46: 2062–2066.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1972b. The Warburg effect in maize bundle sheath photosynthesis. Biochem. Biophys. Res. Commun.48: 684–688.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1973. Photosynthetic carbon metabolism in isolated maize bundle sheath strands. Pl. Physiol.51: 787–792.

    CAS  Google Scholar 

  • —, and D. J. Paolillo, Jr. 1972. Greening in a virescent mutant of maize. I. Pigment, ultrastructural, and gas exchange studies. Z. Pflanzenphysiol.68: 30–44.

    Google Scholar 

  • Chu, D. K., and J. A. Bassham. 1973. Activation and inhibition of ribulose 1,5-diphosphate carboxylase by 6-phosphogluconate. Pl. Physiol.52: 373–379.

    CAS  Google Scholar 

  • Colman, B., A. G. Miller, and B. Grodzinski. 1974. A study of the control of glycolate excretion inChlorella. Pl. Physiol.53: 395–397.

    CAS  Google Scholar 

  • Coombs, J. 1973. β-Carboxylation, photorespiration and photosynthetic carbon assimilation in C4 plants. Curr. Advances Pl. Sci.2 (3): 1–10.

    Google Scholar 

  • —, and C. P. Whittingham. 1966. The mechanism of inhibition of photosynthesis by high partial pressures of oxygen inChlorella. Proc. Roy. Soc. London, Ser. B164: 511–520.

    CAS  Google Scholar 

  • Crang, R. E., and R. D. Noble. 1974. Ultrastructural and physiological differences in soybeans with genetically altered levels of photosynthetic pigments. Amer. J. Bot.61: 903–908.

    Article  Google Scholar 

  • Criswell, J. G., and R. M. Shibles. 1971. Physiological basis for genotypic variation in net photosynthesis of oat leaves. Crop Sci.11: 550–553.

    Article  Google Scholar 

  • Crookston, R. K., and D. N. Moss. 1972. C-4 and C-3 carboxylation characteristics in the genusZygophyllum (Zygophyllaceae). Ann. Missouri Bot. Gard.59: 465–470.

    Article  Google Scholar 

  • —. 1973. A variation of C4 leaf anatomy inArundinella hirta (Gramineae). Pl. Physiol.52: 397–402.

    CAS  Google Scholar 

  • Curtis, P. E., W. L. Ogren, and R. H. Hageman. 1969. Varietal effects in soybean photosynthesis and photorespiration. Crop Sci.9: 323–327.

    Article  Google Scholar 

  • Dalling, M. J., N. E. Tolbert, and R. H. Hageman. 1972. Intracellular location of nitrate reductase and nitrite reductase. I. Spinach and tobacco leaves. Biochim. Biophys. Acta283: 505–512.

    Article  PubMed  CAS  Google Scholar 

  • D’Aoust, A. L., and D. T. Canvin. 1972. The specific activity of14CO2 evolved in CO2-free air in the light and in darkness by sunflower leaves following periods of photosynthesis in14CO2. Photosynthetica6: 150–157.

    CAS  Google Scholar 

  • Decker, J. P. 1955. A rapid, postillumination deceleration of respiration in green leaves. Pl. Physiol.30: 82–84.

    CAS  Google Scholar 

  • —. 1959a. Comparative responses of carbon dioxide outburst and uptake in tobacco. Pl. Physiol.34: 100–102.

    CAS  Google Scholar 

  • —. 1959b. Some effects of temperature and carbon dioxide concentration on photosynthesis ofMimulus. Pl. Physiol.34: 103–106.

    Article  CAS  Google Scholar 

  • Dittrich, P., M. L. Salin, and C. C. Black. 1973. Conversion of carbon 4 of malate into products of the pentose cycle by isolated bundle sheath strands ofDigitaria sanguinalis (L.) Scop. leaves. Biochem. Biophys. Res. Commun.55: 104–110.

    Article  PubMed  CAS  Google Scholar 

  • Downes, R. W., and J. D. Hesketh. 1968. Enhanced photosynthesis at low O2 concentrations: differential response of temperate and tropical grasses. Planta78: 79–84.

    Article  Google Scholar 

  • Downton, W. J. S. 1970. Preferential C4-dicarboxylic acid synthesis, the postillumination CO2 burst, carboxyl transfer step and grana configurations in plants with C4-photosynthesis. Canad. J. Bot.48: 1795–1800.

    CAS  Google Scholar 

  • —. 1971. Check list of C4 species. In: Photosynthesis and photorespiration, ed. by M. D. Hatch, C. B. Osmond, and R. O. Slatyer. Wiley-Interscience, New York. pp. 554–558.

    Google Scholar 

  • —, J. Berry, and E. B. Tregunna. 1969. Photosynthesis: temperate and tropical characteristics within a single grass genus. Science163: 78–79.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, G. E., and C. C. Black. 1971. Photosynthesis in mesophyll cells and bundle sheath cells isolated fromDigitaria sanguinalis (L.) Scop. leaves. In: Photosynthesis and photorespiration, ed. by M. D. Hatch, C. B. Osmond, and R. O. Slatyer. Wiley-Interscience, New York. pp. 153–168.

    Google Scholar 

  • —, R. Kanai, and C. C. Black. 1971. Phosphoenolpyruvate carboxykinase in leaves of certain plants which fix CO2 by the C4 -dicarboxylic acid cycle of photosynthesis. Biochem. Biophys. Res. Commun.45: 278–285.

    Article  PubMed  CAS  Google Scholar 

  • Eickenbusch, J. D., and E. Beck. 1973. Evidence for involvement of 2 types of reaction in glycolate formation during photosynthesis in isolated spinach chloroplasts. FEBS Lett.31: 225–228.

    Article  PubMed  CAS  Google Scholar 

  • Ellyard, P. W. 1968. The Warburg effect, investigations using isolated spinach choroplasts. Ph.D. Thesis, Cornell Univ., Ithaca, N.Y. 133 pp.

    Google Scholar 

  • —, and M. Gibbs. 1969. Inhibition of photosynthesis by oxygen in isolated spinach chloroplasts. Pl. Physiol.44: 1115–1121.

    CAS  Google Scholar 

  • Elstner, E. F., and A. Heupel. 1973. On the decarboxylation of a-keto acids by isolated chloroplasts. Biochim. Biophys. Acta325: 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Fair, P., J. Tew, and C. F. Cresswell. 1973. Enzyme activities associated with carbon dioxide exchange in illuminated leaves ofHordeum vulgare L. I. Effects of light period, leaf age, and position, on carbon dioxide compensation point (Г). Ann. Bot. (London)37: 831–844.

    CAS  Google Scholar 

  • ———. 1974. Enzyme activities associated with carbon dioxide exchange in illuminated leaves ofHordeum vulgare L. IV. The effect of light intensity on the carbon dioxide compensation point. Ann. Bot. (London)38: 45–52.

    CAS  Google Scholar 

  • Forrester, M. L., G. Krotkov, and C. D. Nelson. 1966a. Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. I. Soybean. Pl. Physiol.41: 422–427.

    CAS  Google Scholar 

  • ———. 1966b. Effect of O2 on photosynthesis, photorespiration and respiration in detached leaves. II. Corn and other monocotyledons. Pl. Physiol.41: 428–431.

    Article  CAS  Google Scholar 

  • Frederick, S. E., and E. H. Newcomb. 1969a. Microbody-like organelles in leaf cells. Science163: 1353–1355.

    Article  PubMed  CAS  Google Scholar 

  • —. 1969b. Cytochemical localization of catalase in leaf microbodies (peroxisomes). J. Cell Biol.43: 343–353.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1971. Ultrastructure and distribution of microbodies in leaves of grasses with and without CO2 -photorespiration. Planta96: 152–174.

    Article  CAS  Google Scholar 

  • Gibbs, M. 1971. Carbohydrate metabolism by chloroplasts. In: Structure and function of chloroplasts, ed. by M. Gibbs. Springer-Verlag, New York. pp. 169–214.

    Google Scholar 

  • —, P. W. Ellyard, and E. Latzko. 1968. Warburg effect: control of photosynthesis by oxygen. In: Comparative biochemistry and biophysics of photosynthesis, ed. by K. Shibata, A. Takamiya, A. T. Jagendorf, and R. C. Fuller. University of Tokyo Press, Tokyo. pp. 387–399.

    Google Scholar 

  • Goldsworthy, A. 1966. Experiments on the origin of CO2 released by tobacco leaf segments in the light. Phytochemistry5: 1013–1019.

    Article  CAS  Google Scholar 

  • —. 1969. Riddle of photorespiration. Nature224: 501–502.

    Article  CAS  Google Scholar 

  • —. 1970. Photorespiration. Bot. Rev.36: 321–340.

    Article  CAS  Google Scholar 

  • —, and P. R. Day. 1970. Further evidence for reduced role of photorespiration in low compensation point species. Nature228: 687–688.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, D., and C. F. Cresswell. 1973. Influence of nitrogen supply in nutrient media on CO2 compensation point (Г) of C-4 photosynthetic plants. S. African J. Sci.69: 244–246.

    CAS  Google Scholar 

  • Gutierrez, M., V. E. Gracen, and G. E. Edwards. 1974a. Biochemical and cytological relationships in C4 plants. Planta119: 279–300.

    Article  CAS  Google Scholar 

  • —, R. Kanai, S. C. Huber, S. B. Ku, and G. E. Edwards. 1974b. Photosynthesis in mesophyll protoplasts and bundle sheath cells of various types of C4 plants. I. Carboxylases and CO2 fixation studies. Z. Pflanzenphysiol.72: 305–319.

    CAS  Google Scholar 

  • Hall, A. E., and R. S. Loomis. 1972. Photosynthesis and respiration by healthy and Beet Yellows Virus-infected sugar beets (Beta vulgaris L.). Crop Sci.12: 566–572.

    Article  Google Scholar 

  • Halliwell, B. 1973. The role of formate in photorespiration. Biochem. Soc. Trans.1: 1147–1150.

    CAS  Google Scholar 

  • —. 1974. Superoxide dismutase, catalase and glutathione peroxidase: solutions to the problems of living with oxygen. New Phytol.73: 1075–1086.

    Article  CAS  Google Scholar 

  • —, and V. S. Butt. 1974. Oxidative decarboxylation of glycolate and glyoxylate by leaf peroxisomes. Biochem. J.138: 217–224.

    PubMed  CAS  Google Scholar 

  • Hardy, R. W. F., and U. D. Havelka. 1975. Photosynthate as a major factor limiting N2 fixation by field-grown legumes with emphasis on soybeans. In: IBP Synthesis Volumes, Nitrogen fixation and the biosphere, volume 7, ed. by P. Nutman. Cambridge University Press. in press.

  • Hatch, M. D. 1971. The C4-pathway of photosynthesis. Evidence for an intermediate pool of CO2 and the identity of the donor C4-dicarboxylic acid. Biochem. J.125: 425–432.

    PubMed  CAS  Google Scholar 

  • —, and T. Kagawa. 1973. Enzymes and functional capacities of mesophyll chloroplasts from plants with C4-pathway photosynthesis. Arch. Biochem. Biophys.159: 842–853.

    Article  CAS  Google Scholar 

  • —. 1974a. NAD malic enzyme in leaves with C4-pathway photosynthesis and its role in C4 acid decarboxylation. Arch. Biochem. Biophys.160: 346–349.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1974b. Activity, location and role of NAD malic enzyme in leaves with C4-pathway photosynthesis. Austral. J. Pl. Physiol.1: 357–369.

    CAS  Google Scholar 

  • Heath, O. V. S., H. Meidner, and D. C. Spanner. 1967. Compensation points and carbon dioxide enrichment for lettuce grown under glass in winter. J. Exp. Bot.18: 746–751.

    Article  Google Scholar 

  • Heber, U., and C. S. French. 1968. Effects of oxygen on the electron transport chain of photosynthesis. Planta79: 99–112.

    Article  CAS  Google Scholar 

  • —, M. R. Kirk, H. Gimmler, and G. Schäfer. 1974. Uptake and reduction of glycerate by isolated chloroplasts. Planta120: 31–46.

    Article  CAS  Google Scholar 

  • Heichel, G. H. 1972. Postillumination respiration in maize in relation to O2 concentration and glycolic acid metabolism. Pl. Physiol.49: 490–496.

    CAS  Google Scholar 

  • Hess, J. L., and N. E. Tolbert. 1966. Glycolate, glycine, serine, and glycerate formation during photosynthesis by tobacco leaves. J. Biol. Chem.241: 5705–5711.

    PubMed  CAS  Google Scholar 

  • Hew, C.-S., G. Krotkov, and D. T. Canvin. 1969. Determination of the rate of CO2 evolution by green leaves in light. Pl. Physiol.44: 662–670.

    CAS  Google Scholar 

  • Hilliard, J. H., V. E. Gracen, and S. H. West. 1971. Leaf microbodies (peroxisomes) and catalase localization in plants differing in their photosynthetic carbon pathways. Planta97: 93–105.

    Article  CAS  Google Scholar 

  • Huang, A. H. C., and H. Beevers. 1972. Microbody enzymes and carboxylases in sequential extracts from C4 and C3 leaves. Pl. Physiol.50: 242–248.

    CAS  Google Scholar 

  • Huber, S. C., and G. E. Edwards. 1975. C4 photosynthesis: light dependent CO2 fixation by mesophyll cells, protoplasts, and protoplast extracts ofDigitaria sanguinalis. Pl. Physiol.55: in press.

  • Huber, W., N. Sankhla, and H. Ziegler. 1973. Eco-physiological studies on Indian arid zone plants. I. Photosynthetic characteristics ofPennisetum typhoides (Burm. f.) Stapf & Hubbard andLasiurus sindicus Henr. Oecologia13: 65–71.

    Article  Google Scholar 

  • Jackson, W. A., and R. J. Volk. 1970. Photorespiration. Annual Rev. Pl. Physiol.21: 385–432.

    Article  CAS  Google Scholar 

  • James, T. H., and A. Weissberger. 1937. Autoxidation processes. X. The oxidation of desylamine and of benzoin methyl ether. J. Amer. Chem. Soc.59: 2040–2042.

    Article  CAS  Google Scholar 

  • Jensen, R. G., and J. A. Bassham. 1966. Photosynthesis by isolated chloroplasts. Proc. Natl. Acad. U.S.A.56: 1095–1101.

    Article  CAS  Google Scholar 

  • Johnson, Sister C., and W. V. Brown. 1973. Grass leaf ultra-structural variations. Amer. J. Bot.60: 727–735.

    Article  Google Scholar 

  • Jolliffe, P. A., and E. B. Tregunna. 1968. Effect of temperature, CO2 concentration, and light intensity on oxygen inhibition of photosynthesis in wheat leaves. Pl. Physiol.43: 902–906.

    CAS  Google Scholar 

  • ——. 1973. Environmental regulation of the oxygen effect on apparent photosynthesis in wheat. Canad. J. Bot.51: 841–853.

    Article  CAS  Google Scholar 

  • Kagawa, T., and M. D. Hatch. 1974a. C4-acids as the source of CO2 for Calvin cycle photosynthesis by bundle sheath cells of the C4 -pathway speciesAtriplex spongiosa. Biochem. Biophys. Res. Commun.59: 1326–1332.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1974b. Light-dependent metabolism of carbon compounds by mesophyll chloroplasts from plants with the C4 pathway of photosynthesis. Austral. J. Pl. Physiol.1: 51–64.

    CAS  Google Scholar 

  • Kanai, R., and G. E. Edwards. 1973. Separation of mesophyll protoplasts and bundle sheath cells from maize leaves for photosynthetic studies. Pl Physiol.51: 1133–1137.

    CAS  Google Scholar 

  • Kennedy, R. A., and W. M. Laetsch. 1974. Plant species intermediate for C3, C4 photosynthesis. Science184: 1087–1089.

    Article  PubMed  CAS  Google Scholar 

  • Kisaki, T., and N. E. Tolbert. 1969. Glycolate and glyoxylate metabolism by isolated peroxisomes or chloroplasts. Pl. Physiol.44: 242–250.

    Article  CAS  Google Scholar 

  • —, N. Yano, and S. Hirabayashi. 1972. Photorespiration: stimulation of glycine decarboxylation by O2 in tobacco leaf disks and corn leaf segments. Pl. Cell Physiol.13: 581–584.

    CAS  Google Scholar 

  • Ku, S. B., M. Gutierrez, and G. E. Edwards. 1974. Localization of the C4 and C3 pathways of photosynthesis in the leaves ofPennisetum purpureum and other C4 species. Insignificance of phenol oxidase. Planta119: 267–278.

    Article  CAS  Google Scholar 

  • Laetsch, W. M. 1971. Chloroplast structural relationships in leaves of C4 plants. In: Photosynthesis and photorespiration, ed. by M. D. Hatch, C. B. Osmond, and R. O. Slatyer. Wiley-Interscience, New York. pp. 323–349.

    Google Scholar 

  • —. 1974. The C4 syndrome: a structural analysis. Annual Rev. Pl. Physiol.25: 27–52.

    Article  CAS  Google Scholar 

  • Laing, W. A. 1974. Physiological and biochemical properties of soybean ribulose diphosphate carboxylase. Ph.D. Thesis, Univ. of Illinois, Urbana-Champaign. 207 pp.

    Google Scholar 

  • —, and B. J. Forde. 1971. Comparative photorespiration inAmaranthus, soybean and corn. Planta98: 221–231.

    Article  CAS  Google Scholar 

  • —, W. L. Ogren, and R. H. Hageman. 1973. Ribulose diphosphate carboxylase regulation of an oxygen response in soybean photosynthesis. Pl. Physiol.51(Suppl.): 40.

    Google Scholar 

  • ———. 1974. Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2, and ribulose 1,5-diphosphate carboxylase. Pl. Physiol.54: 678–685.

    Article  CAS  Google Scholar 

  • Lee, R. B., and C. P. Whittingham. 1974. The influence of partial pressure of carbon dioxide upon carbon metabolism in the tomato leaf. J. Exp. Bot.25: 277–287.

    Article  CAS  Google Scholar 

  • Lester, J. N., and A. Goldsworthy. 1973. The occurrence of high CO2-compensation points inAmaranthus species. J. Exp. Bot.24: 1031–1034.

    Article  CAS  Google Scholar 

  • Lewanty, Z., S. Maleszewski, and J. Poskuta. 1971. The effect of O2 concentration on14C incorporation into products of photosynthesis of detached leaves of maize. Z. Pflanzenphysiol.65: 469–472.

    CAS  Google Scholar 

  • Lips, S. H., and Y. Avissar. 1972. Plant-leaf microbodies as the intracellular site of nitrate reductase and nitrite reductase. Eur. J. Biochem.29: 20–24.

    Article  PubMed  CAS  Google Scholar 

  • Liu, A. Y., and C. C. Black, Jr. 1972. Glycolate metabolism in mesophyll cells and bundle sheath cells isolated from crabgrass,Digitaria sanguinalis (L.) Scop., leaves. Arch. Biochem. Biophys.149: 269–280.

    Article  PubMed  CAS  Google Scholar 

  • Lorimer, G. H., and T. J. Andrews. 1973. Plant photorespiration-an inevitable consequence of the existence of atmospheric oxygen. Nature243: 359–360.

    Article  CAS  Google Scholar 

  • ——, and N. E. Tolbert. 1972. Oxidative activity associated with ribulose 1,5-diphosphate carboxylase. Fed. Abstr.31: 461.

    Google Scholar 

  • ———. 1973. Ribulose diphosphate oxygenase. II. Further proof of reaction products and mechanism of action. Biochemistry12: 18–23.

    Article  PubMed  CAS  Google Scholar 

  • Ludlow, M. M., and G. L. Wilson. 1971. Photosynthesis of tropical pasture plants. II. Temperature and illuminance history. Austral. J. Biol. Sci.24: 1065–1075.

    Google Scholar 

  • Ludwig, L. J., and D. T. Canvin. 1971a. The rate of photorespiration during photosynthesis and the relationship of the substrate of light respiration to the products of photosynthesis in sunflower leaves. Pl. Physiol.48: 712–719.

    CAS  Google Scholar 

  • ——. 1971b. An open gas-exchange system for the simultaneous measurement of the CO2 and14CO2 fluxes from leaves. Canad. J. Bot.49: 1299–1313.

    CAS  Google Scholar 

  • Magalhaes, A. C., C. A. Neyra, and R. H. Hageman. 1974. Nitrite assimilation and ammo nitrogen synthesis in isolated spinach chloroplasts. Pl. Physiol.53: 411–415.

    Article  CAS  Google Scholar 

  • Mangat, B. S., W. B. Levin, and R. G. S. Bidwell. 1974. The extent of dark respiration in illuminated leaves and its control by ATP levels. Canad. J. Bot.52: 673–681.

    CAS  Google Scholar 

  • Martin, F. A., J. L. Ozbun, and D. H. Wallace. 1972. Intraspecific measurements of photorespiration. Pl. Physiol.49: 764–768.

    CAS  Google Scholar 

  • McFadden, B. A. 1974. The oxygenase activity of ribulose-1,5-bisphosphate carboxylase fromRhodospirillum rubrum. Biochem. Biophys. Res. Commun.60: 312–317.

    Article  PubMed  CAS  Google Scholar 

  • McWilliam, J. R., and K. Mison. 1974. Significance of the C4 pathway inTriodia irritons (spinifex), a grass adapted to arid environments. Austral. J. Pl. Physiol.1: 171–175.

    Article  CAS  Google Scholar 

  • Menz, K. M., D. N. Moss, R. Q. Cannell, and W. A. Brun. 1969. Screening for photosynthetic efficiency. Crop Sci.9: 692–694.

    Article  Google Scholar 

  • Merrett, M. J., and J. M. Lord. 1973. Glycollate formation and metabolism by algae. New Phytol.72: 751–767.

    Article  CAS  Google Scholar 

  • Miflin, B. J. 1974a. Nitrite reduction in leaves; studies on isolated chloroplasts. Planta116: 187–196.

    Article  CAS  Google Scholar 

  • —. 1974b. The location of nitrite reductase and other enzymes related to amino acid biosynthesis in the plastids of root and leaves. Pl. Physiol.54: 550–555.

    CAS  Google Scholar 

  • Moss, D. N., E. G. Krenzer, Jr., and W. A. Brun. 1969. Carbon dioxide compensation points in related plant species. Science164: 187–188.

    Article  PubMed  CAS  Google Scholar 

  • —, C. M. Willmer, and R. K. Crookston. 1971. CO2 compensation concentration in maize (Zea mays L.) genotypes. Pl. Physiol.47: 847–848.

    CAS  Google Scholar 

  • Mulchi, C. L., R. J. Volk, and W. A. Jackson. 1971. O2 exchange of illuminated leaves at CO2 compensation. In: Photosynthesis and photorespiration, ed. by M. D. Hatch, C. B. Osmond, and R. O. Slatyer. Wiley-Interscience, New York. pp. 35–50.

    Google Scholar 

  • Neyra, C. A., and R. H. Hageman. 1974. Dependence of nitrite reduction on electron transport in chloroplasts. Pl. Physiol.54: 480–483.

    CAS  Google Scholar 

  • Nichiporovich, A. A., S. N. Chmora, G. A. Slobodskaya, and T. A. Avdeyeva. 1973. Types of photosynthetic gas exchange of leaves of beet and maize in relation to the CO2 regimes in their crop stands. Pl. Sci. Lett.1: 399–403.

    Article  Google Scholar 

  • Nishimura, M., and T. Akazawa. 1974. Studies on spinach leaf ribulosebisphosphate carboxylase. Carboxylase and oxygenase reaction examined by immunochemical methods. Biochemistry13: 2277–2281.

    Article  PubMed  CAS  Google Scholar 

  • Ogren, W. L., and G. Bowes. 1971. Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature New Biol.230: 159–160.

    PubMed  CAS  Google Scholar 

  • Osmond, C. B. 1974. Leaf anatomy of Australian saltbushes in relation to photosynthetic pathways. Austral. J. Bot.22: 39–44.

    Article  Google Scholar 

  • —, and O. Björkman. 1972. Effects of O2 on photosynthesis. Simultaneous measurements of oxygen effects on net photosynthesis and glycolate metabolism in C3 and C4 species ofAtriplex. Carnegie Inst. Washington Year Book71: 141–148.

    Google Scholar 

  • —, and B. Harris. 1971. Photorespiration during C4 photosynthesis. Biochim. Biophys. Acta234: 270–282.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, K. J., H. L. Penman, and E. B. Tregunna. 1974. Growth of plants in different oxygen concentrations. J. Exp. Bot.25: 132–144.

    Article  Google Scholar 

  • Plaut, Z., and M. Gibbs. 1970. Glycolate formation in intact spinach chloroplasts. Pl. Physiol.45: 470–474.

    CAS  Google Scholar 

  • Poincelot, R. P. 1972. The distribution of carbonic anhydrase and ribulose diphosphate carboxylase in maize leaves. Pl. Physiol.50: 336–340.

    CAS  Google Scholar 

  • Poskuta, J. 1969. Photosynthesis, respiration and postillumination fixation of CO2 by corn leaves as influenced by light and O2 concentration. Physiol. Pl. (Copenhagen)22: 76–85.

    Article  CAS  Google Scholar 

  • Quebedeaux, B., and R. W. F. Hardy. 1973. Oxygen as a new factor controlling reproductive growth. Nature243: 477–479.

    Article  CAS  Google Scholar 

  • ——. 1975. Reproductive growth and dry matter production ofGlycine max (L.) Merr. in response to oxygen concentration. Pl. Physiol.55: 102–107.

    CAS  Google Scholar 

  • Raven, J. A. 1972a. Endogenous inorganic carbon sources in plant photosynthesis. I. Occurrence of the dark respiratory pathways in illuminated green cells. New Phytol.71: 227–247.

    Article  CAS  Google Scholar 

  • —. 1972b. Endogenous inorganic carbon sources in plant photosynthesis. II. Comparison of total CO2 production in the light with measured CO2 evolution in the light. New Phytol.71: 995–1014.

    Article  CAS  Google Scholar 

  • Rehfeld, D. W., and N. E. Tolbert. 1972. Aminotransferases in peroxisomes from spinach leaves. J. Biol. Chem.247: 4803–4811.

    PubMed  CAS  Google Scholar 

  • Richardson, K. E., and N. E. Tolbert. 1961. Phosphoglycolic acid phosphatase. J. Biol. Chem.236: 1285–1290.

    PubMed  CAS  Google Scholar 

  • Robinson, J. M., and M. Gibbs. 1974. Photosynthetic intermediates, the Warburg effect, and glycolate synthesis in isolated spinach chloroplasts. Pl. Physiol.53: 790–797.

    CAS  Google Scholar 

  • Salin, M. L., and P. H. Homann. 1971. Changes of photorespiratory activity with leaf age. Pl. Physiol.48: 193–196.

    CAS  Google Scholar 

  • —, W. H. Campbell, and C. C. Black, Jr. 1973. Oxaloacetate as the Hill oxidant in mesophyll cells of plants possessing the C4 -dicarboxylic acid cycle of leaf photosynthesis. Proc. Natl. Acad. U.S.A.70: 3730–3734.

    Article  CAS  Google Scholar 

  • Samish, Y. B., J. E. Pallas, Jr., G. M. Dornhoff, and R. M. Shibles. 1972. A re-evaluation of soybean leaf photorespiration. Pl. Physiol.50: 28–30.

    CAS  Google Scholar 

  • Shain, Y., and M. Gibbs. 1971. Formation of glycolate by a reconstituted spinach chloroplast system. Pl. Physiol.48: 325–330.

    Article  CAS  Google Scholar 

  • Singh, M., W. L. Ogren, and J. M. Widholm. 1974. Photosynthetic characteristics of several C3 and C4 plant species grown under different light intensities. Crop Sci.14: 563–566.

    Article  CAS  Google Scholar 

  • Slack, C. R., M. D. Hatch, and D. J. Goodchild. 1969. Distribution of enzymes in mesophyll and parenchyma-sheath chloroplasts of maize leaves in relation to the C4-dicarboxylic acid pathway of photosynthesis. Biochem. J.114: 489–498.

    PubMed  CAS  Google Scholar 

  • Slatyer, R. O. 1970. Comparative photosynthesis, growth and transpiration of two species ofAtriplex. Planta93: 175–189.

    Article  Google Scholar 

  • Smith, B. N., and W. V. Brown. 1973. The Kranz syndrome in the Gramineae as indicated by carbon isotopic ratios. Amer. J. Bot.60: 505–513.

    Article  CAS  Google Scholar 

  • —, and S. Epstein. 1971. Two categories of13C/12C ratios for higher plants. Pl. Physiol.47: 380–384.

    CAS  Google Scholar 

  • Snyder, F. W., and N. E. Tolbert. 1974. Effect of CO2 concentration on glycine and serine formation during photorespiration. Pl. Physiol.53: 514–515.

    CAS  Google Scholar 

  • Stamieszkin, I., S. Maleszewski, and J. Poskuta. 1972. The effect of O2 concentration during preillumination on enhanced dark CO2 -fixation by maize leaves. Z. Pflanzenphysiol.67: 180–182.

    Google Scholar 

  • Sugiyama, T., N. Nakayama, and T. Akazawa. 1968a. Structure and function of chloroplast proteins. V. Homotropic effect of bicarbonate in RuDP carboxylase reaction and the mechanism of activation by magnesium ions. Arch. Biochem. Biophys.126: 737–745.

    Article  PubMed  CAS  Google Scholar 

  • ———. 1968b. Activation of spinach leaf ribulose-1,5-diphosphate carboxylase activities by magnesium ions. Biochem. Biophys. Res. Commun.30: 118–123.

    Article  PubMed  CAS  Google Scholar 

  • Takabe, T., and T. Akazawa. 1973. Oxidative formation of phosphoglycolate from ribulose 1,5-diphosphate catalyzed byChromatium ribulose-1,5-diphosphate carboxylase. Biochem. Biophys. Res. Commun.53: 1173–1179.

    Article  PubMed  CAS  Google Scholar 

  • Tolbert, N. E. 1971. Microbodies-peroxisomes and glyoxysomes. Annual Rev. Pl. Physiol.22: 45–74.

    Article  CAS  Google Scholar 

  • —. 1973a. Compartmentation and control in microbodies. Symp. Soc. Exp. Biol.27: 215–239.

    PubMed  CAS  Google Scholar 

  • —. 1973b. Glycolate biosynthesis. In: Current topics in cellular regulation, volume 7, ed. by B. L. Horecker, and E. R. Stadtman. Academic Press, New York. pp. 21–50.

    Google Scholar 

  • Trebst, A. 1974. Energy conservation in photosynthetic electron transport of chloroplasts. Annual Rev. Pl. Physiol.25: 423–458.

    Article  CAS  Google Scholar 

  • Tregunna, E. B., G. Krotkov, and C. D. Nelson. 1961. Evolution of carbon dioxide by tobacco leaves during the dark period following illumination with light of different intensities. Canad. J. Bot.39: 1045–1056.

    CAS  Google Scholar 

  • ———. 1964. Further evidence on the effects of light on respiration during photosynthesis. Canad. J. Bot.42: 989–997.

    CAS  Google Scholar 

  • ———. 1966. Effect of oxygen on the rate of photorespiration in detached tobacco leaves. Physiol. Pl. (Copenhagen)19: 723–733.

    Article  Google Scholar 

  • Treharne, K. J., A. J. Pritchard, and J. P. Cooper. 1971. Variation in photosynthesis and enzyme activity inCenchrus ciliaris L. J. Exp. Bot.22: 227–238.

    Article  CAS  Google Scholar 

  • Troughton, J. H. 1971. The lack of CO2 evolution in maize leaves in the light. Planta100: 87–92.

    Article  CAS  Google Scholar 

  • —. 1972. Carbon isotope fractionation by plants. Proc. of the 8th International Conf. on Radiocarbon Dating2: 420–437.

    Google Scholar 

  • Usuda, H., H. Matsushima, and S. Miyachi. 1974. Assimilation of carbon dioxide in mesophyll chloroplasts and bundle sheath strands mechanically isolated from corn leaves. Pl. Cell Physiol.15: 517–526.

    CAS  Google Scholar 

  • Volk, R. J., and W. A. Jackson. 1972. Photorespiratory phenomena in maize. O2 uptake, isotope discrimination, and CO2 efflux. Pl. Physiol.49: 218–223.

    CAS  Google Scholar 

  • Walker, D. A. 1965. Correlation between photosynthetic activity and membrane integrity in isolated pea chloroplasts. Pl. Physiol.40: 1157–1161.

    CAS  Google Scholar 

  • —. 1973. Photosynthetic induction phenomena and the light activation of ribulose diphosphate carboxylase. New Phytol.72: 209–235.

    Article  CAS  Google Scholar 

  • Warburg, O. 1920. Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. II. Biochem. Z.103: 188–217.

    CAS  Google Scholar 

  • —, and G. Krippahl. 1960. Glykolsäurebildung inChlorella. Z. Naturforsch.15b: 197–199.

    CAS  Google Scholar 

  • Welkie, G. W., and M. Caldwell. 1970. Leaf anatomy of species in some dicotyledon families as related to the C3 and C4 pathways of carbon fixation. Canad. J. Bot.48: 2135–2146.

    Google Scholar 

  • Whelan, T., W. M. Sackett, and C. R. Benedict. 1973. Enzymatic fractionation of carbon isotopes by PEP carboxylase from C4 plants. Pl. Physiol.51: 1051–1054.

    CAS  Google Scholar 

  • Widholm, J. M., and W. L. Ogren. 1969. Photorespiratory-induced senescence of plants under conditions of low carbon dioxide. Proc. Natl. Acad. U.S.A.63: 668–675.

    Article  CAS  Google Scholar 

  • Wild, A., and E. Müllenbeck. 1973. The photosynthetic rate ofZea mays grown under different light intensities. Z. Pflanzenphysiol.70: 235–244.

    Google Scholar 

  • Williams, G. J., III. 1974. Photosynthetic adaptation to temperature in C3 and C4 grasses. A possible ecological role in the shortgrass prairie. Pl. Physiol.54: 709–711.

    CAS  Google Scholar 

  • —, and J. L. Markley. 1973. The photosynthetic pathway type of North American shortgrass prairie species and some ecological implications. Photosynthetica7: 262–270.

    CAS  Google Scholar 

  • Wynn, T., H. Brown, W. H. Campbell, and C. C. Black, Jr. 1973. Dark release of14CO2 from higher plant leaves. Pl. Physiol.52: 288–291.

    CAS  Google Scholar 

  • Yoshida, S. 1973. Effects of carbon dioxide enrichment at different stages of panicle development on yield components and yield of rice (Oryza sativa L.). Soil Sci. Pl. Nutr. (Tokyo)19: 311–316.

    CAS  Google Scholar 

  • Zelitch, I. 1959. The relationship of glycolic acid to respiration and photosynthesis in tobacco leaves. J. Biol. Chem.234: 3077–3081.

    PubMed  CAS  Google Scholar 

  • —. 1961. Biochemical control of stomatal opening in leaves. Proc. Natl. Acad. U.S.A.47: 1423–1433.

    Article  CAS  Google Scholar 

  • —. 1965. The relation of glycolic acid synthesis to the primary photosynthetic carboxylation reaction in leaves. J. Biol. Chem.240: 1869–1876.

    PubMed  CAS  Google Scholar 

  • —. 1966. Increased rate of net photosynthetic carbon dioxide uptake caused by the inhibition of glycolate oxidase. Pl. Physiol.41: 1623–1631.

    CAS  Google Scholar 

  • —. 1968. Investigations on photorespiration with a sensitive14C-assay. Pl. Physiol.43: 1829–1837.

    CAS  Google Scholar 

  • —. 1971. Photosynthesis, photorespiration, and plant productivity. Academic Press, New York. 347 pp.

    Google Scholar 

  • —. 1972a. Comparison of the effectiveness of glycolic acid and glycine as substrates for photorespiration. Pl. Physiol.50: 109–113.

    CAS  Google Scholar 

  • —. 1972b. The photooxidation of glyoxylate by envelope-free spinach chloroplasts and its relation to photorespiration. Arch. Biochem. Biophys.150: 698–707.

    Article  PubMed  CAS  Google Scholar 

  • —. 1973a. The biochemistry of photorespiration. Curr. Advances Pl. Sci.3 (5): 44–54.

    Google Scholar 

  • —. 1973b. Plant productivity and the control of photorespiration. Proc. Natl. Acad. U.S.A.70: 579–584.

    Article  CAS  Google Scholar 

  • —. 1973c. Alternate pathways of glycolate synthesis in tobacco and maize leaves in relation to rates of photorespiration. Pl. Physiol.51: 299–305.

    CAS  Google Scholar 

  • —. 1974a. The effect of glycidate, an inhibitor of glycolate synthesis, on photorespiration and net photosynthesis. Arch. Biochem. Biophys.163: 367–377.

    Article  PubMed  CAS  Google Scholar 

  • —. 1974b. The effect of glycidate, an inhibitor of glycolate synthesis, on photosynthesis by isolated spinach chloroplasts in H1 4 CO3. Pl. Physiol.53 (Suppl.): 29.

    Google Scholar 

  • —, and P. R. Day. 1968. Variation in photorespiration. The effect of genetic differences in photorespiration on net photosynthesis in tobacco. Pl. Physiol.43: 1838–1844.

    CAS  Google Scholar 

  • ——. 1973. The effect on net photosynthesis of pedigree selection for low and high rates of photorespiration in tobacco. Pl. Physiol.52: 33–37.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chollet, R., Ogren, W.L. Regulation of photorespiration in C3 and C4 species. Bot. Rev 41, 137–179 (1975). https://doi.org/10.1007/BF02860828

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860828

Keywords

Navigation