Skip to main content
Log in

Immobilization of a recombinant cutinase by entrapment and by covalent binding

Kinetic and Stability Studies

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fusarium solani pisi recombinant cutinase, immobilized by entrapment in calcium alginate and by covalent binding on porous silica, was used to catalyze the hydrolysis of tricaprylin. The influence of relevant parameters on the catalytic activity such as pH, temperature, and the substrate concentration were studied. Cutinase immobilized by entrapment presented a Michaelis-Menten kinetics for tricaprylin concentrations up to 200 mM. At higher concentrations of substrate, inhibition was observed. For covalent binding immobilization, diffusional limitations were observed at low substrate concentrations and substrate inhibition occurred for concentrations higher than 150 mM. The stability of immobilized cutinase was also evaluated. The enzyme immobilized by entrapment showed a high stability, in contrast to the immobilization on porous silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldberg, M. (1989), PhD thesis, Université de Compiegne, Compiegne, France.

    Google Scholar 

  2. Klibanov, A. M. (1979),Anal. Biochem. 93, 1–25.

    Article  CAS  Google Scholar 

  3. Tanaka, A. and Kawamoto, T. (1991), inProtein Immobilization, Taylor, R. F., ed., Marcel Dekker Inc., New York, pp. 183–208.

    Google Scholar 

  4. Lauwereys, M., De Geus, P., De Meutter, J., Staussens, P., and Matthysseus, G. (1991), inLipases: Structure, Mechanism and Genetic Engineering, vol. 16, Alberghina, L., Schmid, R. D., Verger, R. eds. VCH, Weinheim, pp. 243–251.

    Google Scholar 

  5. Henley, J. P. and Sadana, A. (1985),Enzyme Microb. Technol. 7, 50–60.

    Article  CAS  Google Scholar 

  6. Hertzberg, S., Kvittingen, L., Anthonsen, T., and Skjak-Broek, G. (1992),Enzyme Microb. Technol. 14, 42–47.

    Article  CAS  Google Scholar 

  7. Weetall, H. H., Vann, W. P., Pitcher, W. H., Lee, D. D., Lee, Y. Y., and Tsao, G. T., (1976), inMethods in Enzymology, vol. 44, Mosbach, K., ed., Academic, New York, pp. 139–140.

    Google Scholar 

  8. Lowry, O. H., Rosenbrough, N. J., Farr, L., and Randall, R. J., (1951),J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  9. Lowry, R. R. and Tinsley, I. J. (1976),J. Am. Oil Chem. Soc. 53, 470–472.

    Article  CAS  Google Scholar 

  10. Melo, E. P., Aires-Barros, M. R., and Cabrai, J. M. S. (1995),Appl. Biochem. Biotechn. 50, 45–56.

    CAS  Google Scholar 

  11. Martinek, K., Klibanov, A. M, Goldmacher, V. S., and Berezin, I. V. (1977),Biochem. Biophys. Acta. 485, 1–12.

    CAS  Google Scholar 

  12. Cornish-Bowden, A. and Wharton, C. W. (1988), inEnzyme Kinetics, Rickwood, D., Male, D., eds., Irl, Oxford.

    Google Scholar 

  13. Gray, C. J. (1988),Biocatalysis 1, 187–196.

    Article  CAS  Google Scholar 

  14. Monsan, P. and Combes, D. (1988),Ann. N. Y. Acad. Sci. 9, 48–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, A.P.V., Cabral, J.M.S. & Aires-Barros, M.R. Immobilization of a recombinant cutinase by entrapment and by covalent binding. Appl Biochem Biotechnol 60, 217–228 (1996). https://doi.org/10.1007/BF02783585

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783585

Index entries

Navigation