Skip to main content
Log in

pBECKS

A flexible series of binary vectors forAgrobacterium-mediated plant transformation

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A series of binary T-DNA vectors (pBECKS) has been created for use in theAgrobacterium-mediated genetic transformation of plants. The pBECKS series has corrected the undesirable features of the popular pBIN19 vector; the deleterious mutation within the coding sequence ofnptII has been amended and the cloning sites are now adjacent to the right border repeat in order to reduce the possibility of producing truncated sequences of novel genes within transformants. One set of vectors incorporates various combiantions of the marker genesgusA,C1/Lc,nptII,hph, andbar, for pursuit of early and stable transformation events. A set of constructs which contain deleted T-DNA borders in various combinations and display predictably altered efficacies for gene transfer has also been created. A modular set of vectors has been designed to facilitate the insertion and transfer of novel gene sequences by providing anptII-linked plant expression cassette orlacZ-multiple cloning site. A range of antibiotic resistance genes has been incorporated into the non-T-DNA part of the vectors in order to facilitate their selection across the range ofAgrobacterium virulence strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J., and Schilperoort, R. A. (1983) A binary vector strategy based on separation ofvir- and T-region of theAgrobacterium tumefaciens Ti-plasmid.Nature 303, 179,180.

    Article  CAS  Google Scholar 

  2. Bevan, M. (1984) BinaryAgrobacterium vectors for plant transformation.Nucleic Acids Res. 12, 8711–8721.

    Article  PubMed  CAS  Google Scholar 

  3. Van den Elzen, P., Lee, K. Y., Townsend, J., and Bedbrook, J. (1985) Simple binary vectors for DNA transfer to plant cells.Plant Mol. Biol. 5, 149–154.

    Article  Google Scholar 

  4. Dablaere, R., Bytebier, B., DeGreve, H., Deboeck, F., Schell, J., Van Montagu, M., and Leemans, J. (1985) Efficient octopine Ti plasmid-derived vectors forAgrobacterium-mediated gene transfer to plants.Nucleic Acids Res. 13, 4777–4788.

    Article  Google Scholar 

  5. Rogers, S. G., Klee, H. J., Horsch, R. B., and Fraley, R. T. (1987) Improved vectors for plant transformation: expression cassette vectors and new selectable markers.Methods Enzymol. 153, 253–305.

    Article  CAS  Google Scholar 

  6. Rothstein, S. J., Lahners, K. N., Lostein, R. J., Carozzie, N. B., Jayne, S. M., and Rice, D. A. (1987) Promoter cassettes, antibiotic-resistance genes and vectors for plant transformation.Gene 53, 153–161.

    Article  PubMed  CAS  Google Scholar 

  7. Olszewski, N. E., Martin, F. B., and Ausubel, F. M. (1988) Specialized binary vectors for plant transformation: expression of theArabidopsis thaliana AHAS gene inNicotiana tabacum.Nucleic Acids Res. 16, 10,765–10,782.

    Article  CAS  Google Scholar 

  8. Yanofsky, R. L., Fine, M., and Pellow, J. W. (1990) A mutant neomycin phosphotransferase Ii gene reduces the resistance of transformants to antibiotic selection pressure.Proc. Natl. Acad. Sci. USA 87, 3435–3439.

    Article  Google Scholar 

  9. Frisch, D. A., Harris-Haller, L. W., Yokubaitis, N. T., Thomas, T. L., Hardin, S. H., and Hall, T. C. (1995) Complete sequence of the binary vector Bin19.Plant Mol. Biol. 27, 405–409.

    Article  PubMed  CAS  Google Scholar 

  10. Fray, R. G., Wallace, A. D., and Grierson, D. (1994) Identification of unexplained DNA fragments within the T-DNA borders of the Bin 19 transformation vector.Plant Mol. Biol. 25, 339–342.

    Article  PubMed  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989)Molecular Cloning: A Laboratory Manual (2nd ed.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  12. Hood, E. E., Helmer, G. L., Fraley, R. T., and Chilton, M.-D. (1986) The hypervirulence ofAgrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA.J. Bacteriol. 168, 1291–1301.

    PubMed  CAS  Google Scholar 

  13. Nagel, R., Elliott, A., Masel, A., Birch, R. G., and Manners, J. M. (1990) Electroporation of binary Ti plasmid vector intoAgrobacterium tumefaciens andAgrobacterium rhizogenes.FEMS Microbiol. Lett. 67, 325.

    Article  CAS  Google Scholar 

  14. Horsch, R. B., Fry, J. E., Hoffman, N. L., Eichholtz, D., Rogers, S. G., and Fraley, R. T. (1985) A simple and general method for transferring genes into plants.Science 227, 1229–1231.

    Article  CAS  Google Scholar 

  15. Jefferson, R. A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system.Plant Mol. Biol. Reptr. 5, 387–405.

    CAS  Google Scholar 

  16. Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C., and Wilson, T. M. A. (1987) The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcriptsin vivo andin vitro.Nucleic Acids Res. 15, 3257–3272.

    Article  PubMed  CAS  Google Scholar 

  17. Grierson, D., Fray, R. G., Hamilton, A. J., Smith, C. J. S., and Watson, C. F. (1991) Does co-suppression of sense genes in transgenic plants involve antisense RNA?Trends Biotechnol. 9, 122,123.

    Article  Google Scholar 

  18. Jones, J. D. G., Shlumukov, L., Carland, F., English, J., Scofield, S. R., Bishop, G. J., and Harrison, K. (1992) Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants.Trans. Res. 1, 285–297.

    Article  CAS  Google Scholar 

  19. Vancanneyt, G., Schmidt, R., O'Conner-Sanchez, A., Willmitzer, L., and Rocha-Sosa, M. (1990) construction of an intro-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events inAgrobacterium-mediated plant transformation.Mol. Gen. Genet. 220, 245–250.

    Article  PubMed  CAS  Google Scholar 

  20. Christou, P., Ford, T. L., and Kofron, M. (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos.Bio/Technology 9, 957–962.

    Article  Google Scholar 

  21. Goff, S. A., Klein, T. M., Roth, B. A., Fromm, M. E., Cone, K. C., Radicalle, J. P., and Chandler, V. L. (1990) Transactivation of biosynthetic genes following transfer ofB regulatory genes into maize tissues.EMBO J. 9, 2517–2522.

    PubMed  CAS  Google Scholar 

  22. Ludwig, S. R., Habera, L. F., Dellaporta, S. L., and Wessler, S. R. (1989)Lc, a member of the maizeR gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains themyc-homology region.Proc. Natl. Acad. Sci. USA 86, 7092–7096.

    Article  PubMed  CAS  Google Scholar 

  23. Klöti, A., Iglesias, V. A., Wunn, J., Burkhardt, P. K., Datta, S. K., and Potrykus, I. (1993) Gene transfer by electroporation into intact scutellum cells of wheat embryos.Plant Cell Rep. 12, 671–675.

    Article  Google Scholar 

  24. Lloyd, A. M., Walbot, V., and Davis, R. W. (1992)Arabidopsis andNicotiana anthocyanin production activated by maize regulatorsR andC1.Science 258, 1773–1775.

    Article  PubMed  CAS  Google Scholar 

  25. Zambryski, P. (1992) Chronicles from theAgrobacterium-plant cell DNA transfer story.Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 465–490.

    Article  CAS  Google Scholar 

  26. Hagio, T., Hirabayashi, T., Machii, H., and Tomotsune, H. (1995) Production of fertile transgenic barley (Hordeum vulgare L.) plant using the hygromycin-resistance marker.Plant Cell Rep. 14, 329–334.

    Article  CAS  Google Scholar 

  27. Penaloza-Vazquez, A., Oropeza, A., Mena, G. L., and Bailey, A. M. (1995) Expression of the hygromycin B phosphotransferase gene confers tolerance to the herbicide glyphosate.Plant Cell Rep. 14, 482–487.

    Article  CAS  Google Scholar 

  28. DeBlock, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gossele, V., RaoMovva, N., Thompson, C., Van Montagu, M., and Leemans, J. (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme.EMBO J. 6, 2513–2518.

    CAS  Google Scholar 

  29. Quattrochio, F., Wing, J. F., Leppen, H. T. C., Mol, J. N. M., and Koes, R. E. (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes.Plant Cell 5, 1497–1512.

    Article  Google Scholar 

  30. Horsch, R. B. and Klee, H. J. (1986) Rapid assay of foreign gene expression in leaf discs transformed byAgrobacterium tumefaciens: role of T-DNA borders in the transfer process.Proc. Natl. Acad. Sci. USA 83, 4428–4432.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Fong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormac, A.C., Elliott, M.C. & Chen, DF. pBECKS. Mol Biotechnol 8, 199–213 (1997). https://doi.org/10.1007/BF02760773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02760773

Index Entries

Navigation