Skip to main content
Log in

Antioxidative response in different sorghum species under short-term salinity stress

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Seedlings of sorghum varieties (M35-1, a drought tolerant species; SPV-839, a drought sensitive one) differing in their drought tolerance were subjected to 150 mM NaCl stress for a short duration of time (up to 72 h). Both the varieties failed to exhibit efficient ion exclusion mechanism like that of salt tolerant species, but in turn resulted in higher accumulation of Na+ and Cl ions over a period of 72 h salt stress. In addition, accumulation of calcium, potassium and proline in seedlings of sorghum varieties was moderate to short-term NaCl stress. The modulation of antioxidant components significantly diverged between the two varieties during seed germination, further the efficiency of antioxidant scavenging system is maintained during short-term NaCl treatments. In comparison to tolerant variety, the sensitive variety depicted higher SOD activity under control and salinity treatments but specific activity of catalase was significantly reduced. In contrast, drought tolerant variety exhibited efficient hydrogen peroxide scavenging mechanisms with higher catalase and GST activities under control and salt stress conditions, but not in the sensitive one. In conclusion, our comparative studies indicate that drought tolerant and susceptible varieties of sorghum induce efficient differential oxidative components of enzymatic machinery for scavenging ROS thereby alleviating the oxidative stress generated by salt stress during seedling growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDNB:

1-Chloro-2-dinitrobenzene

GR:

Glutathione reductase

GST:

Glutathione S-transferase

OH:

Hydroxyl radical

MDA:

Malondialdehyde

NBT:

Nitro Blue Tetrazolium

ROX:

Reactive oxygen species

GSH:

Reduced glutathione

PVP:

Poly Vinyl Pyrrolidine

SOD:

Superoxide dismutase

O 2 :

Superoxide radical

TCA:

Trichloroacetic acid

References

  • Bailly C. 200. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14 (2): 93–107.

    Article  CAS  Google Scholar 

  • Bandeoglu E., Eyidogan F., Yucel M., Oktem H.A. 2004. Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Reg. 42: 69–77.

    Article  CAS  Google Scholar 

  • Bates L.S., Waldem R.P., Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–207.

    Article  CAS  Google Scholar 

  • Beauchamp C., Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287.

    Article  PubMed  CAS  Google Scholar 

  • Benavente L. M., Teixeira F.K., Kamei C.L.A., Pinheiro M.M. 2004. Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci. 166: 323–331.

    Article  CAS  Google Scholar 

  • Boyer J. S. 1982. Plant productivity and environment. Science 218: 443–448.

    Article  PubMed  Google Scholar 

  • Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bueno P., Piqueras A., Kurepa J., Savoure A., Verbruggen N., Montagu V. M., Inze D. 1998. Expression of antioxidant enzymes in response to abscicic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci. 138: 27–34.

    Article  CAS  Google Scholar 

  • Chadalavada S.V., Rajendrakumar B., Reddy V.B., Reddy A.R. 1994. Proline-protein interactions: Protection of structural and functional integrity of M4 lactate dehydrogenase. Biochem. Biophys. Res. Com. 201: 957–963.

    Article  Google Scholar 

  • Claiborne A. 1985. Catalase activity. In: CRC Handbook of methods for oxygen radical research, Boca Raton, ed. by R. A Greenwald. CRC Press: 283–284.

    Google Scholar 

  • Dat J., Vandenabeele S., Vranova E., Van Montagu M., Inze D., Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57: 779–795.

    Article  PubMed  CAS  Google Scholar 

  • Dionisio-Sese M. L., Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135: 1–9.

    Article  CAS  Google Scholar 

  • Ellman G. L. 1959. Tissue sulfhydryl groups.Arch. Biochem. Biophys. 82: 70–77.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I. 1986. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel O. 1971. Analytical disc gel electrophoresis. In: Methods in Enzymology, New York, ed. by W. B. Jakoby, Academic Press: 22: 565–577.

    Google Scholar 

  • Gilbert H. F., Mc Lean V., Mc Lean M. 1990. Molecular and cellular aspects of thiol-disulfide exchange. Adv. Enzym. 63: 169–172.

    Google Scholar 

  • Gossett D. R., Millhollon E. P., Lucas M. C., Banks S. W., Marney M. M. 1994. The effect of NaCl on antioxidant enzyme activities in callus tissue of salt tolerant and salt sensitive cotton cultivars (Gossypium hirsutum L.). Plant Cell Rep. 13: 498–503.

    Article  CAS  Google Scholar 

  • Gossett D. R., Banks S. W., Millhollon E. P., Banks S. W., Lucas M. C. 1996. Antioxidant response to NaCl stress in a control and a NaCl tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine and exogenous glutathione. Plant Physiol. 112: 803–809.

    PubMed  Google Scholar 

  • Habig W. H., Pabst M. J., Jakoby W. B. 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 246: 7130–7139.

    Google Scholar 

  • Hasegawa P. M., Bressan R. A., Zhu J.-K., Bohnert H. J. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463–499.

    Article  PubMed  CAS  Google Scholar 

  • Kavi Kishor P. B., Sangam S., Amrutha R. N., Sri Laxmi P., Naidu K. R., Rao K.R.S.S., Sreenath Rao, Reddy K.J., Theriappan P., Sreenivasulu N. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci. 88: 424–438.

    Google Scholar 

  • Khan M. H., Singha K. L. B., Panda S. K. 2002. Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl salinity stress. Acta Physiol. Plant. 24: 145–148.

    Article  CAS  Google Scholar 

  • Lin C. C., Kao C. H. 2000. Effect of NaCl on H2O2 metabolism in rice leaves. Plant Growth Reg. 30: 151–155.

    Article  CAS  Google Scholar 

  • Marklund S., Marklund G. 1975. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469–74.

    Article  Google Scholar 

  • Meneguzzo S., Sgheeri C. L. M., Navari-Izzo F., Izzo R. 1998. Stromal and thylakoid-bound ascorbate peroxidases in NaCl treated wheat. Physiol. Plant. 140: 735–740.

    Article  Google Scholar 

  • Meneguzzo S., Navari-Izzo F., and Izzo R. 1999. Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. J. Plant Physiol. 155: 274–280.

    CAS  Google Scholar 

  • Noctor G., Foyer C. H. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. 49: 249–279.

    Article  CAS  Google Scholar 

  • Parida A. K., Das A. B., Mohanty P. 2004. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. J. Plant Physiol. 161: 531–542.

    Article  PubMed  CAS  Google Scholar 

  • Polidoros A. N., Scandalios J. G. 1999. Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.). Physiol. Plant. 106: 112–120.

    Article  CAS  Google Scholar 

  • Ruegsegger A., Schmutz D., Brunold C. 1990. Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol. 93: 1579–1584.

    Article  PubMed  CAS  Google Scholar 

  • Sairam R. K., Veerabhardra Rao K., Srivastava G. C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163: 1037–1046.

    Article  CAS  Google Scholar 

  • Sarvesh A., Anuradha M., Pulliah T., Reddy T. P., Kavi Kishor P. B. 1996. Salt stress and antioxidant response in high and low proline producing cultivars of niger, Guizotia abyssinica (L.f) Cass Ind. J. Exp. Biol. 34: 252–256.

    CAS  Google Scholar 

  • Schaedle M., Bassham J., 1977. Chloroplast glutathione reductase. Plant Physiol. 59: 1011–1012.

    PubMed  CAS  Google Scholar 

  • Shannon M. C., Grieve C. M., Francois L. E. 1990. Whole-plant response to salinity. In: Plant environmental interactions, ed. by M. Dekker, R. E. Wilkinson. Inc.270, A. Madison., New York, 199–244., ISBN 0-8247-89407.

    Google Scholar 

  • Sivakumar P., Sharmila P., Pardha Saradhi P. 2000. Proline alleviates salt stress induced enhancement in ribulose 1,5-bisphosphate oxygenase activity. Biochem Biophys Res Commun. 279: 512–515.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125: 27–58.

    Article  CAS  Google Scholar 

  • Sreenivasulu N., Grimm B., Wobus U., Weschke W. 2000. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica L.). Physiol. Plantarum. 109: 435–442.

    Article  CAS  Google Scholar 

  • Sudhakar C., Lakshmi A., Giridhar Kumar S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under salinity. Plant Sci. 161: 613–619.

    Article  CAS  Google Scholar 

  • Tsai Y. C., Hong C. Y., Liu L. F., Kao C. H. 2004. Relative importance of Na+ and Cl in NaCl-induced antioxidant systems in roots of rice seedlings. Physiol. Plant. 122: 86–94.

    Article  CAS  Google Scholar 

  • Utley H. G., Bernheim F., Hochstein P. 1967. Effect of sulfhydryl reagents on peroxidation of microsomes. Arch. Biochem. Biophys. 118: 29–32.

    Article  CAS  Google Scholar 

  • Vaidyanathan H., Sivakumar P., Chakrabarty R., George T. 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) — differential response in salt-tolerant and sensitive varieties. Plant Sci. 165: 1411–1418.

    Article  CAS  Google Scholar 

  • Vitoria A. P., Lea P. J., Azevedo R. A. 2001. Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry. 57: 701–710.

    Article  PubMed  CAS  Google Scholar 

  • Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Montagu M. V., Inze D., Camp W. V. 1997. Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J. 16: 4806–4816.

    Article  PubMed  CAS  Google Scholar 

  • Williamson G., Beverley M. C. 1987. The purification of acidic glutathione-S-transferases from pea seeds and their activity with lipid peroxidation products. Biochem. Soc. Trans. 15: 1103–1104.

    CAS  Google Scholar 

  • Zacchin M i., Ria E., Tullio M., Agazio M. 2003. Increased antioxidative capacity in maize calli during and after oxidative stress induced by a long lead treatment. Plant Physiol. Biochem. 41: 49–54.

    Article  Google Scholar 

  • Zhu J.-K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Kavi Kishor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jogeswar, G., Pallela, R., Jakka, N.M. et al. Antioxidative response in different sorghum species under short-term salinity stress. Acta Physiol Plant 28, 465–475 (2006). https://doi.org/10.1007/BF02706630

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706630

Key words

Navigation