Skip to main content
Log in

Spontaneous alternation behavior in animals: A review

  • Articles
  • Published:
Current Psychological Research & Reviews Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 1987

Abstract

Factors affecting spontaneous alternation behavior (SAB) in animals, for example, age, gender and species studied; type of apparatus and cues employed; and neuro-anatomical, neuro-chemical and motivational status of the organism, were reviewed. Despite a myriad of experiments showing interesting main effects of such variables, little research has been performed assessing the interactive affects of these factors on alternation behavior. For example, psychologists test rats in central nervous system (CNS) lesion studies, whereas psychopharmacologists tend to assess SAB in mice. Most importantly, studies have not been reported investigating the possible interactions among species, brain lesions and drugs. This is an unfortunate omission since several important alternation models include propositions relating to cholinergic and/or serotonergic coding in the hippocampus. Examination of behavioral studies revealed the primary cue for alternation among invertebrates to be body turn, whereas vertebrates rely primarily on directional and odor cues. Reference to the seeking of stimulus change remains the most compelling motivational account of why animals manifest this ubiquitious and reliable behavior pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ader, R., & Belfar, M.L. (1969). Emotional behavior in the rat as a function of maternal emotionality.Psychological Reports, 10, 349–350.

    Article  Google Scholar 

  • Aderman, M., & Dawson, J.N. (1970). Comparison of forced-choice alternation in goldfish and planaria.Journal of Comparative and Physiological Psychology, 71, 29–33.

    Article  Google Scholar 

  • Alpern, H.P., & Marriott, J.G. (1973). Short term memory: Facilitation and disruption with cholinergic agents.Physiology andd Behavior, 11, 571–575.

    Article  Google Scholar 

  • Altman, J., Brunner, R.L., & Bayer, S.A. (1973). The hippocampus and behavioral maturation.Behavioral Biology, 8, 557–596.

    Article  PubMed  Google Scholar 

  • Altman, J., & Das, G.D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats.Journal of Comparative Neurology, 124, 319–336.

    Article  PubMed  Google Scholar 

  • Anisman, H. (1975, July-August). Dissociation of disinhibitory effects of scopolamine: Strain and task factors.Pharmacology, Biochemistry & Behavior, 3(4), 613–618.

    Article  Google Scholar 

  • Anisman, H., & Kokkinidis, L. (1975). Effects of scopolamine, d-amphetamine and other drugs affecting catecholamines on spontaneous alternation and locomotor activity in mice.Psychopharmacologia, 45(1), 55–63.

    Article  Google Scholar 

  • Arnold, M.B. (1960).Emotion and personality, vol. II: Physiological aspects. New York: Columbia University Press.

    Google Scholar 

  • Baisden, R.H., Isaacson, R.L., Woodruff, M.L., & Van Hartesveldt, D. (1972). The effect of physostigmine on spontaneous alternation in infant rabbits.Psychonomic Science, 26, 287–288.

    Article  Google Scholar 

  • Baker, J.G., & Franken, R.E. (1968). Spontaneous alternation and the influence of reward.Psychological Reports, 22, 821–825.

    Article  PubMed  Google Scholar 

  • Bignami, G., & Michalek, H. (1978). Cholinergic mechanisms and aversively motivated behaviors. In H. Anisman & G. Bignami (Eds.),Psychopharmacology and aversively motivated behavior (pp. 173–255). New York: Plenum.

    Chapter  Google Scholar 

  • Blampied, N.M., & Harvey, S.P. (1979). 3-Acetylpryridine and spontaneous alternation: A replication.IRCS Medical Science: Nervous System; Pharmacology; Psychology and Psychiatry, 7, 261.

    Google Scholar 

  • Blampied, N.M., & Wilby, C.M. (1975). Effects of 3-acetylpyridine on SA in the mouse.Pharmacology, Biochemistry, and Behavior, 3, 317–319.

    Article  PubMed  Google Scholar 

  • Bohdanecky, Z., & Jarvick, M.E. (1967). Impairment on one-trial passive avoidance learning in mice by scopolamine, scopolamine methylbromide and physostigmine.International Journal of Neuropharmacology, 6, 217–222.

    Article  PubMed  Google Scholar 

  • Borst, A., Delacour, J., & Liboubar, S. (1979). Effects, chez le rat, de lesions du noyau caude sun le conditionnement te response alternee.Neuropsychologia, 8 89–101.

    Article  Google Scholar 

  • Brill, M. (1967).Parameters of odor-trial avoidance in the spontaneous alternation of the rat. Unpub. Ph.D. diss., University of Cincinnati.

  • Bronstein, P.M., Dworkin, T., Bilder, B.H., & Wolkoff, F.D. (1974). Repeated failures in reducing rat’s spontaneous alternation through the intertrial disruption of spatial orientation.Animal Learning and Behavior, 2, 207–209.

    Article  Google Scholar 

  • Bruner, R.L. (1969). Age differences in one-trial passive avoidance learning.Psychonomic Science, 14, 134.

    Article  Google Scholar 

  • Bunney, B.S., Aghajanian, G.K., & Roth, R.H. (1973). L-DOPA, amphetamine and spomorphine: Comparison of effects on the firing rate of rat dopaminergic neurons.Nature, 245, 123.

    Google Scholar 

  • Capaldi, E.J. (1963). Overlearning reversal effect in a spatial discrimination task.Perceptual and Motor Skills, 16, 335–336.

    Article  PubMed  Google Scholar 

  • Carlton, P.L. (1963). Cholinergic mechanisms in the control of behavior by the brain.Psychological Review, 70, 19–39.

    Article  PubMed  Google Scholar 

  • Carlton, P.L. (1968). Brain-acetylcholine and inhibition. In J. T. Tapp (Ed.),Reinforcement and behavior (pp. 286–327). New York: Academic Press.

    Google Scholar 

  • Clayton, K.N. (1963). Reversal performance by rats following overlearning with and without irrelevant stimuli.Journal of Experimental Psychology, 66, 255–259.

    Article  PubMed  Google Scholar 

  • Cogan, D., Jones, J.F., & Irons, T. (1979). Spontaneous alternation in chicks using social reward.Developmental Psychology, 12(4), 285–290.

    Article  Google Scholar 

  • Collier, B., Lovat, S., Ilson, D., Barker, L.A., & Mittag, T.W. (1977). The uptake, metabolism, and release of homocholine: Studies with rat brain symptosomes and cat supervisor cervical ganglion.Journal of Neurochemistry, 28, 331.

    Article  PubMed  Google Scholar 

  • Cooper, J.R., Bloom, F.E., & Roth, R.H. (1978).The biochemical basis of neuropharmacology. New York: Oxford University Press.

    Google Scholar 

  • Cox, T. (1970). The effects of caffeine, alcohol, and previous exposure to the test situation on spontaneous alternation.Psychopharmacologia, 17, 83–88.

    Article  PubMed  Google Scholar 

  • Dalland, T. (1970). Response and stimulus perseveration in rats with septal and dorsal hippocampal lesions.Journal of Comparative and Physiological Psychology, 71, 114–118.

    Article  PubMed  Google Scholar 

  • Dalland, T. (1974, June). Stimulus perseveration of rats with septal lesions.Physiology & Behavior, 12(6), 1057–1061.

    Article  Google Scholar 

  • Dalland, T. (1976). Stimulation perseveration of rats with dorsal hippocampal lesions.Behavioral Biology, 17, 473–484.

    Article  PubMed  Google Scholar 

  • Dember, W.N. (1956). Response by the rat to environmental change.Journal of Comparative and Physiological Psychology, 49, 93–95.

    Article  PubMed  Google Scholar 

  • Dember, W.N. (1961). Alternation behavior. In D.W. Fiske & S. R. Maddi (eds.),Functions of varied experience (pp. 227–252). Homewood, IL: Dorsey Press.

    Google Scholar 

  • Dember, W.N., & Earl, R.W. (1957). Analysis of exploratory, manipulatory and curiosity behaviors.Psychological Review, 64, 91–96.

    Article  PubMed  Google Scholar 

  • Dember, W.N., & Fowler, M. (1958). Spontaneous alternation behavior.Psychological Bulletin, 55, 412–428.

    Article  PubMed  Google Scholar 

  • Dember, W.N., & Kleinman, R. (1973). Cues for spontaneous alternation by gerbils.Animal Learning & Behavior, 1(4), 287–289.

    Article  Google Scholar 

  • Dember, W.N., & Roberts, W. (1958). Alternation behavior in peripherally blinded rats.Perceptual and Motor Skills, 8, 91–94.

    Article  Google Scholar 

  • Dember, W.N., Sherrick, M.F., & Harris, R.P. (1966). Trial-two goal arm alternation to orientation of trial-one starting stem.Bulletin of Psychonomic Science, 6(7), 31–32.

    Article  Google Scholar 

  • Dennis, W. (1935). A comparison of the rat’s first and second explorations of a maze unit.American Journal of Psychology, 47, 488–90.

    Article  Google Scholar 

  • DeValois, D.C. (1954). The relation of different levels and kinds of motivation to variability of behavior.Journal of Experimental Psychology, 47, 392–398.

    Article  Google Scholar 

  • Dingle, H. (1964). Correcting behavior in mealworms (Jenebrio) and the rejection of a previous hypothesis.Animal Behaviour, 12, 137–139.

    Article  Google Scholar 

  • Dokla, C.P., Jikasprow, W.J., Sidelean, M.M., & Boitano, J.J. (1980). Effects of electroconvulsive shock on openfield behavior and spontaneous alternation in rats.Behavioral Neuralogical Biology, 28(3), 266–284.

    Article  Google Scholar 

  • Douglas, R.J. (1966). Cues for spontaneous alternation.Journal of Comparative Physiological Psychology, 62, 171–183.

    Article  PubMed  Google Scholar 

  • Douglas, R.J. (1967). The hippicampus and behavior.Psychological Bulletin, 67, 416–442.

    Article  PubMed  Google Scholar 

  • Douglas R.J. (1975). The development of hippocampal function: Implications for theory and for therapy. In R.L. Isaacson & K.H. Pribram (Eds.),The hiccocampus (vol. II, chap. 11). New York: Plenum.

    Google Scholar 

  • Douglas, R.J., Clar, G.M., Erway, L.C., Hubbard, D.G., & Wright, C.G. (1979). Effects of genetic vestibular defects on behavior related to spatial orientation and emotionality.Journal of Comparative and Physiological Psychology, 93(3), 467–480.

    Article  PubMed  Google Scholar 

  • Douglas, R.J., & Isaacson, R.L. (1964). Hippocampal lesions and activity.Psychonomic Science, 1(7), 187–188.

    Article  Google Scholar 

  • Douglas, R.J., & Isaacson, R.L. (1966). Spontaneous alternation and scopolamine.Psychonomic Science, 4, 283–284.

    Article  Google Scholar 

  • Douglas, R.J., Isaacson, R.L., & Moss, R.L. (1969). Olfactory lesions, emotionality and activity.Physiology & Behavior, 4, 379–381.

    Article  Google Scholar 

  • Douglas, R.J., Mitchell, D., & Del Valle, R. (1974). Angle between choice alleys as a critical factor in spontaneous alternation.Animal Learning and Behavior, 2, 128–220.

    Article  Google Scholar 

  • Douglas, R.J., Mitchell, D., & Kentala, D. (1972). Spontaneous alternation as a function of maze configuration.Bulletin of Psychonomic Science, 27(5), 285–286.

    Article  Google Scholar 

  • Douglas, R.J., & Raphaelson, A.C. (1966). Spontaneous alternation and septal lesions.Journal of Comparative and Physiological Psychology, 62, 320–322.

    Article  PubMed  Google Scholar 

  • Drachman, D.A. (1978). Central cholinergic system and memory. In M.A. Lipton, A. DiMascio, & K.F. Killam (Eds.),Psychopharmacology: A generation of progress. New York: Raven.

    Google Scholar 

  • Drew, W.G., Miller, L.L., & Baugh, E.L. (1973). Effects of THC, LSD-25 and scopolamine on continuous, spontaneous alternation in the Y-maze.Psychopharmacologia, 32, 171–182.

    Article  PubMed  Google Scholar 

  • Duncan, C.P. (1949). The retroactive effect of electroshock on learning.Journal of Comparative and Physiological Psychology, 42, 32–44.

    Article  PubMed  Google Scholar 

  • Egger, G.J., Livesey, P.J., & Dawson, R.G. (1973). Ontogenetic aspects of central cholinergic involvement in spontaneous alternation behavior.Developmental Psychobiology, 6, 289–299.

    Article  PubMed  Google Scholar 

  • Einon, D.F., & Morgan, M.J. (1978). Early isolation produces enduring hyperactivity in the rat, but no effect on spontaneous alternation.Quarterly Journal of Experimental Psychology, 30(1), 151–156.

    Article  PubMed  Google Scholar 

  • Eisenberger, R., Myers, A.K., Sanders, R., & Shanab, M. (1970). Stimulus control of spontaneous alternation in the rat.Journal of Comparative and Physiological Psychology, 70(1), 136–140.

    Article  Google Scholar 

  • Ellen, P., & Deloache, J. (1968). Hippocampal lesions and spontaneous alternation behavior in the rat.Physiology and Behavior, 3, 857–860.

    Article  Google Scholar 

  • Estes, W.K., & Schoeffler, M.S. (1955). Analysis of variables influencing alternation after forced trials.Journal of Comparative and Physiological Psychology, 48, 357–362.

    Article  PubMed  Google Scholar 

  • Fibiger, H.C., Lytle, L.D., & Campbell, B.A. (1970). Cholinergic modulation of adrenergic arousal in the developing rat.Journal of Comparative Physiological Psychology, 72 384–389.

    Article  PubMed  Google Scholar 

  • Fidura, F.G., & Leberer, M.R. (1974). Spontaneous alternation as a function of number of forced-choice responses in the goldfish (Carassius auratus).Bulletin of the Psychonomic Society, 3, 181–182.

    Article  Google Scholar 

  • Fowler, H., Blond, J., & Dember, W.N. (1959). Alternation behavior and learning: The influence of reinforcement magnitude, number and contingency.Journal of Comparative and Physiological Psychology, 52, 609–614.

    Article  PubMed  Google Scholar 

  • Fowler, H., Fowler, D.E., & Dember, W.N. (1959). The influence of reward alternation behavior.Journal of Comparative and Physiological Psychology, 56(3), 220–224.

    Article  Google Scholar 

  • Frederickson, C., & Frederickson, M. (1979). Emergence of spontaneous alternation in the kittens.Developmental Psychobiology, 12(6), 615–621.

    Article  PubMed  Google Scholar 

  • Gaffan, E.A., & Davies, J. (1981). The role of exploration in winshift and win-stay performance on radial maze.Learning and Motivation, 12(3), 282–299.

    Article  Google Scholar 

  • Gaffan, E.A., & Davies, J. (1982). Reward, novelty and spontaneous alternation.Quarterly Journal of Experimental Psychology, 34B(1), 31–47.

    Article  Google Scholar 

  • Gerbrandt, L.K. (1964). Generalization from the distinction of passive and active avoidance.Psychological Reports, 15(1), 11–22.

    Article  Google Scholar 

  • Gerbrandt, L.K. (1965). Neural systems of response release and control.Psychological Bulletin, 64(2), 113–123.

    Article  PubMed  Google Scholar 

  • Glanzer, M. (1953). Stimulus satiation: An explanation of spontaneous alternation and related phenomena.Psychological Review, 60, 257–268.

    Article  PubMed  Google Scholar 

  • Goss-Custard, J.D. (1977). Optimal foraging and the size selection of worms by redshnks (Tringa Tolanus) in the field.Animal Behaviour, 25, 10–29.

    Article  Google Scholar 

  • Gray, J.A. (1982). Precis of the neuropsychology of anxiety: An inquiry into the functions of the septo-hippocampal system.Behavioral and Brain Sciences, 5(3), 469–534.

    Article  Google Scholar 

  • Gross, C.G., Black, P., Chorover S.L. (1968). Hippocampal lesions: Effects on memory in rats.Psychonomic Science, 12, 165–166.

    Article  Google Scholar 

  • Grosslight, J.H., & Harrison, P.C. (1961). Variability of response in a determined turning sequence on the meal worm (Tenebrio molibor): An experimental test of alternative hypotheses.Animal Behavior, 9, 100–103.

    Article  Google Scholar 

  • Heise, G.A., Conner, R., & Martin, R.A. (1976). Effects of scopolamine on variable intertrial spatial alternation and memory in the rat.Psychopharmacology, 49(2), 131–137.

    Article  PubMed  Google Scholar 

  • Henderson, N.D. (1970). A genetic analysis of spontaneous alternation in mice.Behavior Genetics, 1, 125–132.

    PubMed  Google Scholar 

  • Hoffer, B.J., Siggins, G.R., Oliver, A.P., & Bloom, F.E. (1973). Activation of the pathway from the locus coeruleus to rat cerebellar Purkinje neurons: Pharmacological evidence of nonadrenergic central inhibition.Journal of Pharmacological Experimental Therapy, 184, 553.

    Google Scholar 

  • Hughes, R.N. (1965). Spontaneous alternation and response to stimulus change in the ferret.Journal of Comparative and Physiological Psychology, 60(1), 149–150.

    Article  PubMed  Google Scholar 

  • Hughes, R.N. (1967). Turn alternation in woodlice (Porcellio scaber).Animal Behavior, 15, 282–286.

    Article  Google Scholar 

  • Hughes, R.N. (1973). Spontaneous alternation in adult rabbits.Bulletin of the Psychonomic Society, 2(1), 2.

    Article  Google Scholar 

  • Hughes, R.N. (1978). Effects of blinding, antennectomy, food deprivation and simulated natural conditions on alternation in woodlice.Journal of Biological Psychology, 20(2), 35–40.

    Google Scholar 

  • Hughes, R.N. (1985). Mechanisms for turn alternation in woodlice (Porcellio scaber): The role of bilaterally asymmetrical leg movements.Animal Learning & Behavior, 13(3), 253–260.

    Article  Google Scholar 

  • Hughes, R.N., & Daley, V.A. (1977). Cholinergic involvement in SA. IRCS Medical Science: Nervous system; pharmacology.Psychology and Psychiatry, 5, 94.

    Google Scholar 

  • Hughes, R.N., & Greig, A.M. (1975, June). Spontaneous alternation in ferrets following treatment with scopolamine, chlordiazepaxide, and caffeine.Physiological Psychology, 3(2), 155–156.

    Article  Google Scholar 

  • Hughes, R.N., & Seanberg, K.M. (1970). Forcing, stimulus-change, and alternation.Perceptual and Motor Skills, 31, 902.

    Article  Google Scholar 

  • Hull, C.L. (1943).Principles of behavior. New York: Appleton-Century.

    Google Scholar 

  • Isaacson, R.L., Douglas, R.J., Luber, J.F., & Schmaltz, L.W. (1971).A primer of physiological psychology. New York: Harper & Row.

    Google Scholar 

  • Isseroff, A. (1976). Limited recovery of spontaneous alternation after extensive hippocampal damage: Evidence for a memory impairment.Experimental Neurology, 64, 284–294.

    Article  Google Scholar 

  • Isseroff, A. (1979). Facilitation of delayed alternation performance in adult rats following chronic hydroxyzine treatment in infancy.Behavioral and Neural Biology, 26(4), 379–383.

    Article  PubMed  Google Scholar 

  • Isseroff, A., & Isseroff, R.G. (1978). Experience aids recovery of SA following hippocampal damage.Physiology and Behavior, 21, 469–472.

    Article  PubMed  Google Scholar 

  • Iwahara, S., & Fujita, O. (1965). Effect of intertrial interval and removal of the supra-pharyngeal ganglion upon spontaneous alternation in the earthworm:Pheretima communissma.Japanese Psychological Research, 1, 32–37.

    Google Scholar 

  • Iwahara, S., Oishi, H., Yamazaki, S., & Sakai, K. (1972). Effects of chlordiazepoxide upon spontaneous alternation and the hippocampal electrical activity in white rats.Psychopharmacologia, 24, 496–502.

    Article  PubMed  Google Scholar 

  • Iwata, K., & Watanabe, M. (1957). Alternate turning response ofarmadillidium vulgare: II. Turning and straight going tendencies.Annual of Animal Psychology, 1, 53–57.

    Google Scholar 

  • Jaffard, R., Dubois, M., & Galey, D. (1981). Memory of a choice direction in a T maze as measured by spontaneous alternation in mice: Effects of intertrial interval and reward.Behavioral Processes, 6(1), 11–21.

    Article  Google Scholar 

  • Johnson, F.N. (1980). The effects of lithium chloride on spontaneous alternation behavior in goldfish (Carassius auratus).Neuropsychobiology, 6, 72–78.

    Article  PubMed  Google Scholar 

  • Johnson, C.T., Olton, D.S., Gage, F.H., & Jenko, P.G. (1977). Damage to the hippocampus and hippocampal connections: Effects on DRL and spontaneous alternation.Journal of Comparative and Physiological Psychology, 91, 508–522.

    Article  PubMed  Google Scholar 

  • Kahneman, D., & Tversky, A. (1973). On the psychology of prediction.Psychological Review, 80(4), 237–251.

    Article  Google Scholar 

  • Kamil, A.C., & Sargent, T.D. (1981).Foraging behavior; Ecological, ethological and psychological approaches. New York: Garland Press.

    Google Scholar 

  • Kandel, R.E., & Spencer, W.A. (1968). Cellular neurophysiological approaches in the study of learning.Physiological Review, 48, 65.

    Google Scholar 

  • Karczmar, A.G. (1978). Exploitable aspects of central cholinergic functions particularly with respect to the EEG, motor, analgesic and mental functions. In D.J. Jenden (Ed.),Cholinergic mechanisms and psychopharmacology (pp. 679–708). New York: Plenum.

    Chapter  Google Scholar 

  • Kimble, D.P. (1968). Hippocampus and internal inhibition.Psychological Bulletin, 70, 285–295.

    Article  PubMed  Google Scholar 

  • Kimble, D.P., Bremiller, R., Stickrod, G., & Smotherman, W.P. (1980). Failure to find a behavioral role for anomalous sympathetic innervation of the hippocampus in male rats.Physiological Behavior, 25(5), 675–681.

    Article  Google Scholar 

  • Kirkby, R.J. (1967). A maturation factor in spontaneous alternation.Nature (London),215, 784.

    Article  Google Scholar 

  • Kirkby, R.J., Stein, D.G., Kimble, R.J., & Kimble, D.P. (1967). Effects of hippocampal lesions and duration of sensory input on spontaneous alternation.Journal of Comparative and Physiological Psychology, 64, 342–345.

    Article  PubMed  Google Scholar 

  • Kivy, P.N., Earl, R.W., & Walker, E.L. (1956). Stimulus context and satiation.Journal of Comparative and Physiological Psychology, 49, 90–92.

    Article  PubMed  Google Scholar 

  • Klein, D., & Brown, T.S. (1969). Exploratory behavior and spontaneous alternation in blind and anosmic rats.Journal of Comparative and Physiological Psychology, 68(1), 107–110.

    Article  PubMed  Google Scholar 

  • Kokkinidis, L., & Anisman, H. (1976a). Interaction between cholinergic and catecholaminergic agents in a spontaneous alternation task.Psychopharmacology, 48(3), 261–270.

    Article  PubMed  Google Scholar 

  • Kokkinidis, L., & Anisman, H. (1976b). Dissociation of the effects of scopolamine and d-amphetamine on a spontaneous alternation task.Pharmacology, Biochemistry & Behavior, 5(3), 293–297.

    Article  Google Scholar 

  • Kokkinidis, L., & Anisman, H. (1977). Perseveration and rotational behavior elicited by d-amphetamine in a Y-maze exploratory task: Differential effects on intraperitoneal and unilateral intraventricular administration.Psychopharmacology, 52, 123–128.

    Article  PubMed  Google Scholar 

  • Kokkinidis, L., & Anisman, H. (1978a). Abatement of stimulus perseveration following repeated d-amphetamine treatment: Absence of behaviorally augmented tolerance.Pharmacology, Biochemistry & Behavior, 8, 557–563.

    Article  Google Scholar 

  • Kokkinidis, L., & Anisman, H. (1978b). Behavioral specific tolerance following chronic d- or l-amphetamine treatment: Lack of involvement of p-hydroxynorephedrine.Neuropharmacology, 17, 95–102.

    Article  PubMed  Google Scholar 

  • Kokkinidis, L., Irwin, J., & Anisman, H. (1979). Ontogenetic variations in amphetamine-induced stimulus perseveration.Behavioral & Neural Biology, 26(2), 221–133.

    Article  Google Scholar 

  • Kokkinidis, L., Walsh, M.D., Lahne, R., & Anisman, H. (1977). Tolerance to d-amphetamine: Behavioral specificity.Life Sciences, 18, 913–918.

    Article  Google Scholar 

  • Kostas, J., McFarland, D.J., & Drew, W.G. (1976). Lead-induced hyperactivity. Chronic exposure during the neonatal period in the rat.Pharmacology, 14, 435–442.

    Article  PubMed  Google Scholar 

  • Kostas, J., McFarland, D.J., & Drew, W.G. (1978). Lead-induced behavioral disorders in the rat: Effects of amphetamine.Pharmacology, 16, 226–236.

    Article  PubMed  Google Scholar 

  • Kupferman, I. (1966). Turn alternation in the pill bug (Armadillidium vulgare).Animal Behaviour, 68–72.

  • Lalonde, R., Botez, M.I., & Boivin, D. (1986). Spontaneous alternation and habituation in a T-maze in nervous mutant mice.Behavioral Neuroscience, 100(3), 350–352.

    Article  PubMed  Google Scholar 

  • Leaton, R.N., & Utell, M.J. (1970). Effects of scopolamine on spontaneous alternation following free and forced trials.Physiology & Behavior, 5, 331–334.

    Article  Google Scholar 

  • Lepley, W.M., & Rice, G.E. (1952). Behavior variability in paramecia as a function of guided act sequences.Journal of Comparative and Physiological Psychology, 45, 283–286.

    Article  PubMed  Google Scholar 

  • Livesey, P.J., Livesey, D.J., & Syme, G.J. (1981). Spontaneous alternation in the white rat: A learning/memory phenomenon.Behavioral and Neural Biology, 32, 158–169.

    Article  Google Scholar 

  • Lovejoy, E. (1966). Analysis of the overlearning reversal effect.Psychological Review, 73, 87–103.

    Article  PubMed  Google Scholar 

  • Mabry, P.D., & Campbell, B.A. (1974). Onogeny of serotonergic inhibition of behavioral arousal in the rat.Journal of Comparative and Physiological Psychology, 86, 193–201.

    Article  PubMed  Google Scholar 

  • Mackintosh, N.J. (1965). Selective attention on animal discrimination learning.Psychological Bulletin, 64, 124–150.

    Article  PubMed  Google Scholar 

  • May, R.B., & Wellman, A.W. (1968). Alternation in the fruit fly, Drosophila melanogaster.Psychonomic Science, 12, 339–340.

    Article  Google Scholar 

  • McRae-Deguerce, A., Dennis, T., Leger, L., & Scanton, B. (1985). Regulation of noradrenergic neuronal activity in the rat locus coeruleus by sertoninergic afferents.Physiological Psychology, 13(3), 188–196.

    Article  Google Scholar 

  • Miller, G.A., & Frick, F.C. (1949). Statistical behavioristics and sequences of responses.Psychological Review, 56, 311–324.

    Article  PubMed  Google Scholar 

  • Montgomery, K.C. (1952). Exploration behavior and its relation to spontaneous alternation in a series of maze exposures.Journal of Comparative and Physiological Psychology, 45, 50–57.

    Article  PubMed  Google Scholar 

  • O’Connell, R.H. (1964). Comparison of alternation and response to stimulus change.Journal of Comparative and Physiological Psychology, 57, 362–366.

    Article  PubMed  Google Scholar 

  • O’Connell, R.H. (1971). Spontaneous alternation of brightness?Psychonomic Science, 22, 273–274.

    Article  Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978).The hippocampus as a cognitive map. Oxford: Clarendon Press.

    Google Scholar 

  • Olton, D.S. (1978). Characteristics of spatial memory. In S.H. Hulse, H. Fowler, & W.K. Honig (Eds.),Cognitive processes in animal behavior. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Olton, D.S., Handelmann, G.E., & Walker, J.D. (1981). Spatial memory and food searching strategies. In A.C. Kamil & T.D. Sargent (Eds.),Foraging behavior: Ecological, ethological and psychological approaches. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Olton, D.W., Walker, F.H.G., III, & Johnson, C.T. (1977). Choice behavior of rats searching for food.Learning and Motivation, 8, 315–331.

    Article  Google Scholar 

  • Pate, J.L., & Deloache, J. (1970). Brightness and direction as cues for spontaneous alternation behavior.Bulletin of Psychonomic Science, 18(1), 27–28.

    Article  Google Scholar 

  • Petchkovsky, L., & Kirkby, R.J. (1970). Individual differences, emotionality, and spontaneous alternation in mice.Australian Journal of Psychology, 22, 75–78.

    Article  Google Scholar 

  • Potegal, M., Day, J.J., & Abraham, L. (1977). Maze-orientation visual and vestibular cues in two-maze spontaneous alternation of rats.Physiological Psychology, 5(4), 414–420.

    Article  Google Scholar 

  • Richman, C.L. (1969).Drive and reward effects on spontaneous alternation. Unpublished manuscript, Wake Forest University, Winston-Salem, NC.

    Google Scholar 

  • Richman, C.L. (1970). Effects of experimentally induced irrelevant stimuli on reversal shifts.Journal of Genetic Psychology, 117, 69–83.

    Article  Google Scholar 

  • Richman, C.L., Chappell, L.R., Crowe, D., Perry, P.C., & Redfearn, L. (1970). Spontaneous alternation behavior in rats as a function of brightness cues.Psychological Reports, 27, 356–358.

    Article  Google Scholar 

  • Richman, C.L., & Coussens, W. (1970). Undertraining reversal effect in rats.Journal of Experimental Psychology, 86(2), 340–342.

    Article  Google Scholar 

  • Richman, C.L., Gardner, J.T., Montgomery, M.D., & Benewicz, K.L. (1970). Effects of body weight loss on position and brightness discrimination tasks.Learning and Motivation, 1, 218–225.

    Article  Google Scholar 

  • Richman, C.L., Gulkin, R., & Knoblock, K. (1972). Effects of bulbectomization, strain, and gentling on emotionality and exploratory behavior in rats.Physiology and Behavior, 8(3), 447–452.

    Article  PubMed  Google Scholar 

  • Richman, C.L., Knoblock, K., & Coussens, W. (1972). The overtraining reversal effect in rats: A function of task difficulty.Quarterly Journal of Experimental Psychology, 24, 291–298.

    Article  PubMed  Google Scholar 

  • Roberts, W., Dember, W., & Brodwick, M. (1962). Alternation and exploration in rats with hippocampal lesions.Journal of Comparative & Physiological Psychology, 55(5), 695–700.

    Article  Google Scholar 

  • Rosen, J.J., & Stein, D.G. (1968).The role of vestibular and olfactory cues and the effects of limbic-rhinal system lesions on spontaneous alternation. Unpub. manuscript.

  • Rosenkilde, C.E. (1978). Delayed alternation behavior following ablations of the medial or dorsal prefrontal cortex in dogs.Physiology & Behavior, 20, 397–402.

    Article  Google Scholar 

  • Russell, R.W. (1949). Effects of electroshock convulsions on learning and retention in rats as a function of difficulty of the task.Journal of Comparative Physiological Psychology, 42, 137–142.

    Article  PubMed  Google Scholar 

  • Sachs, L.B., Klopper, F.D., & Morrow, J.E. (1965). “Reactive inhibition” in the sowbug.Psychological Reports, 17, 739–743.

    Article  PubMed  Google Scholar 

  • Schnurr, R. (1971). Spontaneous alternation in normal and brain-damaged gerbils.Psychonomic Science, 25, 181–182.

    Article  Google Scholar 

  • Schultz, D.P. (1964). Spontaneous alternation behavior in humans: Implications for psychological research.Psychological Bulletin, 62, 394–400.

    Article  PubMed  Google Scholar 

  • Sherrick, M.F., Brunner, R.L., Roth, T.G., & Dember, W.N. (1979). Rats’ sensitivity to their direction of movement and spontaneous alternation behavior.Quarterly Journal of Experimental Psychology, 31(1), 83–93.

    Article  PubMed  Google Scholar 

  • Sherrick, M.F., & Dember, W.N. (1966a). The tendency to alternate direction of movement as reflected in starting stem running speed.Bulletin of Psychonomic Science, 6(1), 29–30.

    Article  Google Scholar 

  • Sherrick, M.F., & Dember, W.N. (1966b). Trial-two goal arm alternation to direction of movement in trial-one straight alley.Bulletin of Psychonomic Science, 6(7), 317–318.

    Article  Google Scholar 

  • Sinclair, J.D. (1978). Alcohol-deprivation effect in rats genetically selected for their ethenol preference.Pharmacological Biochemistry & Behavior, 10(4), 592–602.

    Google Scholar 

  • Sinclair, R., & Bender, D.O. (1978). Compensatory behaviors: Suggestion for a common basis from deficits in hamsters.Life Sciences, 22(16), 1407–1412.

    Article  PubMed  Google Scholar 

  • Smith, G.J., & Spear, N.E. (1978). Effects of the home environment on withholding behaviors and conditioning in infant and neonatal rats.Science, 202, 327–329.

    Article  PubMed  Google Scholar 

  • Solomon, R.L. (1948). The influence of work on behavior.Psychological Bulletin, 45, 1–40.

    Article  PubMed  Google Scholar 

  • Sperling, S.E. (1970). The ORE in simultaneous and differential reversal: Acquisition tasks, acquisition criterion, and reversal task.Journal of Experimental Psychology, 84, 349–360.

    Article  Google Scholar 

  • Squire, L.R. (1969). Effects of pretrial and posttrial administration of cholinergic and anticholinergic drugs on spontaneous alternation.Journal of Comparative & Physiological Psychology, 1, 69–75.

    Article  Google Scholar 

  • Srebro, B., Ellertsen, B., & Ursin, H. (1976). Deficits in avoidance learning following septal lesions in the albino rat.Physiological Behavior, 16, 589–602.

    Article  Google Scholar 

  • Stearns, S.T. (1977). The evolution of life history traits: A critique of the theory and a review of the data.Annual Review of Ecology and Systematics, 8, 145–171.

    Article  Google Scholar 

  • Stevens, R. (1973). Effects of duration of sensory input and intertrial interval on spontaneous alternation in rats with hippocampal lesions.Physiological Psychology, 1(1), 41–44.

    Article  Google Scholar 

  • Still, A.W. (1966). Spontaneous alternation and pattern of reinforcement. Quarterly Journal of Experimental Psychology, 18, 105–118.

    Google Scholar 

  • Still, A.W. (1974). The effect of ECS on spontaneous alternation in rats.Physiology & Behavior, 12(2), 301–304.

    Article  Google Scholar 

  • Still, A., & MacMillan, A. (1969). Odor trail and spontaneous alternation.Psychonomic Science, 16, 160–161.

    Article  Google Scholar 

  • Still, A.W., & MacMillan, S.C. (1975). Location by odor and turn selection as two stages in the spontaneous alternation of rats.Animal Behavior, 23, 447–449.

    Article  Google Scholar 

  • Stone, L.A., & Knutson, C.S. (1963). Response to handling as a function of sex and emotional differences in the albino rat.Journal of General Psychology, 102, 69–74.

    Google Scholar 

  • Sutherland, N.S. (1964). Visual discrimination learning in animals.British Medical Bulletin, 20(1), 54–59.

    Article  PubMed  Google Scholar 

  • Swanson, L.W., & Hartman, B.K. (1975). The central adrenergic system. An immuno-flourescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine B-hydroxylase as a marker.Journal of Comparative Neurology, 163, 467–506.

    Article  PubMed  Google Scholar 

  • Swonger, A.K., & Rech, R.H. (1972). Serotonergic and cholinergic involvement in habituation of activity and spontaneous alternation of rats in a Y maze.Journal of Comparative & Physiological Psychology, 81, 509–522.

    Article  Google Scholar 

  • Syme, G.J., & Syme, L.A. (1975). Some attempts to demonstrate exploratory behavior in chickens.Psychological Record, 25(3), 363–371.

    Article  Google Scholar 

  • Thomas, G.J. (1979). Comparison of effects of small lesions in posterodorsal septum on spontaneous and rerun correction alternation in rats.Journal of Comparative and Physiological Psychology, 93(4), 685–694.

    Article  PubMed  Google Scholar 

  • Thomas, J.B. (1972). Stimulus perseveration and choice behavior in rats with septal lesions.Journal of Comparative and Physiological Psychology, 80(1), 97–105.

    Article  PubMed  Google Scholar 

  • Thompson, M.E. (1960). Alternation in a T maze as a function of three variables.Psychological Reports, 7, 103–110.

    Article  Google Scholar 

  • Thompson, M.E. (1962). Stimulus alternation, response repetition, and response alternation in a multiple-choice situation.Psychological Reports, 11, 523–527.

    Article  Google Scholar 

  • Thompson, M.E., & Thompson, J.P. (1964). Alternation and repetition in a multiple-choice situation.Psychological Reports, 14, 505–506.

    Article  Google Scholar 

  • Tilley, M.W., Doolittle, J.H., & Mason, D.J. (1966). Spontaneous alternation in the Virginia opposum.Psychological Reports, 19, 593–594.

    Article  PubMed  Google Scholar 

  • Tolman, E.C. (1925). Purpose and cognition: The determiners of animal learning.Psychological Review, 32, 285–297.

    Article  Google Scholar 

  • Tubbs, W.E. (1969). Primate frontal lesions and the temporal structure of behavior.Behavioral Science, 14, 347–356.

    Article  PubMed  Google Scholar 

  • Ursin, H., & Kaada, B.R. (1960). Functional localization within the smygdaloid complex in the cat.Electroencephalography and Clinical Neurophysiology Journal, 12, 1–20.

    Article  Google Scholar 

  • Walker, E.L., Dember, W.N., Earl, R.W., & Karoly, A.J. (1955). Choice alternation: I. Stimulus vs. place vs. response.Journal of Comparative and Physiological Psychology, 48, 19–23.

    Article  PubMed  Google Scholar 

  • Walker, E.L., Dember, W.N., Earl., R.W., Fawl., C.L., & Karoly, A.J. (1955). Choice alternation: III. Response intensity vs. response discriminability.Journal of Comparative and Physiological Psychology, 48, 80–85.

    Article  PubMed  Google Scholar 

  • Wayner, M.J., Jr., & Zellner, D.K. (1958). The role of the suprapharyngeal ganglion in spontaneous alternation and negative movements inLumbricus terrestris L.Journal of Comparative and Physiological Psychology, 51, 282–287.

    Article  PubMed  Google Scholar 

  • Wikmark, R.G., Divac, I., & Weiss, R. (1973). Retention of spatial delayed alternation in rats with lesions in the frontal lobes: Implications for a comparative neuropsychology of the prefrontal system.Brain, Behavior & Evolution, 8(5), 329–339.

    Article  Google Scholar 

  • Wilcox, J., & Broadhurst, P.L. (1967). Strain differences in emotionality: Open-field and conditioned avoidance behavior in the rat.Journal of Comparative and Physiological Psychology, 63, 335–338.

    Article  Google Scholar 

  • Will, B., DeLuzache, F., & Kelche, C. (1983). Does post-operative environment attenuate or exacerbate symptoms which follow hippocampal lesions in rats?Behavioral and Brain Research, 7(1), 125–132.

    Article  Google Scholar 

  • Wilson, M.M., & Fowler, H. (1976). Variables affecting alternation behavior in the cockroach,Blatta Orientalis.Animal Learning & Behavior, 4(4), 490–494.

    Article  Google Scholar 

  • Winer, J., & Lubar, J.F. (1976). Alternation behavior of cats with medical visual cortex ablation.Physiology & Behavior, 17, 635–643.

    Article  Google Scholar 

  • Zach, R., & Smith, N.M. (1981). Optimal foraging in wild birds. In A.C. Kamil & I.O. Sargent (Eds.),Foraging behavior: Ecological, ethological and psychological approaches. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Zeaman, D., & Angell, D. (1953). A spatial gradient of alternation tendency.Journal of Comparative and Physiological Psychology, 46, 390–392.

    Article  Google Scholar 

  • Zeaman, D., & House, B.J. (1951). Growth and decay of reactive inhibition as measured by alternation behavior.Journal of Experimental Psychology, 41, 177–186.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This review and the unpublished studies were supported by Research Grants MH16962, MH21288, and MH36491 from the National Institute of Mental Health and the Wake Forest University Research and Publication Fund.

An erratum to this article is available at http://dx.doi.org/10.1007/BF02686620.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richman, C.L., Dember, W.N. & Kim, P. Spontaneous alternation behavior in animals: A review. Current Psychology 5, 358–391 (1986). https://doi.org/10.1007/BF02686603

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686603

Keywords

Navigation