Skip to main content
Log in

Noncompartmental models of whole-body clearance of tracers: A review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Noncompartmental models are defined as models that allow for transport of material through regions of the body that are not necessarily well-mixed or of uniform concentration. The clearance of a substance of interest, (metabolite or drug) from a noncompartmental system will not necessarily be governed by a sum of exponentials or even be describable by a set of ordinary differential equations. The model may involve diffusion or other random walk processes, leading to the solution in terms of the partial differential equation of diffusion or in terms of probability distributions. It may use the theory of linear systems to obviate the need for defining any precise anatomical structure. A number of the models reviewed deal with plasma clearance curves that are best described by power functions of time. Circulatory models are reviewed from their inception to the present. Recent studies on clearance as a fractal process are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, J., E. W. Emery, J. M. McAlister, and S. B. Osborn. The metabolism of a therapeutic dose of45Ca in a case of multiple myeloma.Clin. Sci. 15:567–585, 1956.

    PubMed  CAS  Google Scholar 

  2. anderson, J., S. B. Osborn, R. W. S. Tomlinson, and I. Weinbren. Some applications of power law analysis to radioisotope studies in man.Phys. Med. Biol. 8:287–295, 1963.

    Article  Google Scholar 

  3. Anderson, J., and M. E. Wise. Clearance curves of radioactive tracers—sums of exponentials or powers of time?Phys. Med. Biol. 14:498–501, 1969.

    Article  PubMed  CAS  Google Scholar 

  4. Bassingthwaighte, J. B., and C. A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In. Handbook of physiology. Section 2: The cardiovascular system. Volume IV: Microcirculation, part 1, editied by E. M. Renkin and C. C. Michel, Bethesda, MD: American Physiological Society, 1984, pp. 549–626.

    Google Scholar 

  5. Bassingthwaighte, J. B., L. S. Liebovitch, and B. J. West. Fractal Physiology, New York: American Physiological Society, 1994, 364 pp.

    Google Scholar 

  6. Bassingthwaighte, J. B. and D. A. Beard. Fractal15O-water washout from the heart.Circ. Res. 77:1212–1221, 1995.

    PubMed  CAS  Google Scholar 

  7. Bellman, R., J. A. Jacquez, and R. Kalaba. Some mathematical aspects of chemotherapy. I. One organ models.Bull. Math. Biophys. 22:181–198; 1960.

    Article  Google Scholar 

  8. Bernard, S. R. Discussion. In: Compartments, pools and spaces in medical physiology, edited by P.-E. E. Bergner, C. C. Lushbaugh, and E. B. Anderson, Oak Ridge, TN: U.S. Atomic Energy Commission, 1967, 471 pp.

    Google Scholar 

  9. Branson, H.Cold Spring Harbor Symposia Quant. Biol. 13: 35–42, 1948.

    CAS  Google Scholar 

  10. Branson, H. The kinetics of reactions in biological systems.Arch. Biochem. Biophys. 36:48–59, 1952.

    Article  CAS  Google Scholar 

  11. Branson, H. Metabolic pathways from tracer experiments.Arch. Biochem. Biophys. 36:60–70, 1952.

    Article  CAS  Google Scholar 

  12. Carson, E. R., C. Cobelli, and L. Finkelstein. The Mathematical Modelling of Metabolic and Endocrine Systems: Model Formulation, Identification, and Validation. New York: Wiley, 1983, 394 pp.

    Google Scholar 

  13. DiStefano, J. J., III. Noncompartmental vs. compartmental analysis: some bases for choice.Am. J. Physiol. 243:R1-R6, 1982.

    PubMed  Google Scholar 

  14. Draper, N. R. and H. Smith, Applied Regression Analysis. New York: Wiley, 1966, 407 pp.

    Google Scholar 

  15. Durisova, M., L. Dedik, and M. Balan. Building a structured model of a complex pharmacokinetic system with time delays.Bull. Math. Biol. 57:787–808, 1995.

    Article  PubMed  CAS  Google Scholar 

  16. Edington, G. M., J. M. Judd, and A. H. Ward. Delayed toxicity of radiostrontium in monkeys.Nature 175:33, 1955.

    Article  PubMed  CAS  Google Scholar 

  17. Goresky, C. A. Initial distribution and rate of uptake of sulfobromophthalein in the liver.Am. J. Physiol. 207:13–26, 1964.

    PubMed  CAS  Google Scholar 

  18. Jacquez, J. A., R. Bellman, and R. Kalaba. Some mathematical aspects of chemotherapy. II. The distribution of a drug in the body.Bull. Math. Biophys. 22:309–322, 1960.

    Article  CAS  Google Scholar 

  19. Jacquez, J. A. Compartmental Analysis in Biology and medicine (second edition)., Ann Arbor: University of Michigan Press, 1985, 237 pp.

    Google Scholar 

  20. Kallai, M. A. A new approach to the measurement of glycerol turnover and preliminary application to the measurement of triglyceride turnover. Toronto: University, of Toronto, Ph.D. Thesis, 1977.

    Google Scholar 

  21. Kallai-Sanfaçon, M. A., K. H. Norwich, and G. Steiner. A new approach to the measurement of glycerol turnover.Can. J. Physiol. Pharmacol. 56:934–939, 1978.

    PubMed  Google Scholar 

  22. Keilson, J., A. Kester, and C. Waterhouse. A circulatory model for human metabolism.J. Theor. Biol. 74:535–547, 1978.

    Article  PubMed  CAS  Google Scholar 

  23. Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue.J. Physiol. 52:409–415, 1919.

    PubMed  CAS  Google Scholar 

  24. Larson, K. B., and J. R. Cox, eds. Computer, Processing of Dynamic Images from an Anger Scintillation Camera. New York: The Society of Nuclear Medicine, Inc., 1974, pp. 152–154.

    Google Scholar 

  25. Marcus, A. H. Power laws in compartmental analysis. part I. A unified stochastic model.Math. Biosci. 23:337–350, 1975.

    Article  Google Scholar 

  26. Marcus, A. H., and A. Becker. Power laws in compartmental analysis. II. Numerical evaluation of semi-Markov models.Math. Biosci. 35:27–45, 1977.

    Article  Google Scholar 

  27. Marcus, A. H. Compartmental models with spatial diffusion: estimation for bone-seeking tracers.Math. Biosci. 64:233–248, 1983.

    Article  Google Scholar 

  28. Mari, A. Circulatory models of intact-body kinetics and their relationship with compartmental and non-compartmental analysis.J. Theor. Biol. 160:509–531, 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Mari, A. Determination of the single-pass impulse response of the body tissues with circulatory models.IEEE Trans. Biomed. Eng. 42:304–312, 1995.

    Article  PubMed  CAS  Google Scholar 

  30. Mari, A. Calculation of organ and whole-body uptake and production with the impulse response approach.J. Theor. Biol. 174:341–353, 1995.

    Article  Google Scholar 

  31. Marshall, J. H. Theory of alkaline earth metabolism.J. Theor. Biol. 6:386–412, 1964.

    Article  PubMed  CAS  Google Scholar 

  32. Marshall, J. H. Calcium pools and the power function. In: Compartments pools and spaces in medical physiology, edited by P.-E. E. Bergner and C. C. Lushbaugh. Oak Ridge, TN: U.S. Atomic Energy Commission, 1967, 451–468.

    Google Scholar 

  33. Marshall, J. H., and C. Onkelinx. Radial diffusion and power function retention of alkaline earth radioisotopes in adult bone.Nature 217:742–743, 1968.

    Article  PubMed  CAS  Google Scholar 

  34. Meier, P., and K. L. Zierler. On the theory of the indicatordilution method for measurement of blood flow and volume.J. Appl. Physiol., 6:731–744, 1954.

    PubMed  CAS  Google Scholar 

  35. Norris, W. P., S. A. Tyler, and A. M. Brues. Retention of radioactive bone-seekers.Science 128:456–462, 1958.

    Article  PubMed  CAS  Google Scholar 

  36. Norwich, K. H. Convective diffusion of tracers.J. Theor. Biol. 32:47–57, 1971.

    Article  PubMed  CAS  Google Scholar 

  37. Norwich, K. H. Measuring rates of appearance in systems which are not in steady state.Can. J. Physiol. Pharmacol. 51:91–101, 1973.

    PubMed  CAS  Google Scholar 

  38. Norwich, K. H., J. Radziuk, D. Lau, and M. Vranic. Experimental validation of nonsteady rate measurements using a tracer infusion method.Can J. Physiol. Pharmacol. 52:508–521, 1974.

    PubMed  CAS  Google Scholar 

  39. Norwich, K. H.. Molecular Dynamics in Biosystems: The Kinetics of Tracers in Intact Organisms. Oxford: Pergamon, 1977, 405 pp.

    Google Scholar 

  40. Norwich, K. H. Classical Theoretical Physiology: The Conceptual Basis of Medical Physiology. Toronto: Intercept, 1981, 158 pp.

    Google Scholar 

  41. Norwich, K. H. Turnover with nonidentical sources of labelled and unlabelled substance.Ann. Biomed. Eng. 10:161–174, 1982.

    Article  PubMed  CAS  Google Scholar 

  42. Norwich, K. H., and S. Siu. Power functions in physiology and pharmacology.J. Theor. Biol. 95:387–398, 1982.

    Article  PubMed  CAS  Google Scholar 

  43. Norwich, K. H. Can diffusion coefficients be estimated from plasma clearance curves of intact animals?J. Theor. Biol. 95:399–407, 1982.

    Article  PubMed  CAS  Google Scholar 

  44. Norwich, K. H. Noncompartmental analysis in metabolism.J. Parenter. Enter. Nutr. 15:59S-64S, 1991.

    CAS  Google Scholar 

  45. Norwich, K. H. Sites of infusion and sampling for measurement of rates of production in steady state.Am. J. Physiol. 263 (Endocrinol. Metab. 26):E817-E822, 1992.

    PubMed  CAS  Google Scholar 

  46. Okajima, F., M. Chenoweth, R. Rognstad, A. Dunn, and J. Katz. Metabolism of3H- and14C-labelled lactate in starved rats.Biochem. J. 194:525–540, 1981.

    PubMed  CAS  Google Scholar 

  47. Pang, K. S., B. Ford, A. Simard, A. J. Schwab, and C. A. Goresky. Silfation of acetaminophen by the perfused rat liver: the effect of red blood cell carriage.Hepatology 22: 267–282, 1995.

    Article  PubMed  CAS  Google Scholar 

  48. Radziuk, J., K. H. Norwich, and M. Vranic, Measurement and validation of nonsteady turnover rates with applications to the inulin and glucose systems.Fed. Proc. 33:1855–1864, 1974.

    PubMed  CAS  Google Scholar 

  49. Rappaport, A. M. The microcirculatory hepatic, unit.Microvasc. Res. 6:212–228, 1973.

    Article  PubMed  CAS  Google Scholar 

  50. Schwab, A. J. Extension, of the theory of the multiple indicator dilution technique to variable systems with an arbitrary number of rate constants.Math. Biosci. 71:57–79, 1984.

    Article  CAS  Google Scholar 

  51. Snyder, W. S., B. R. Fish, S. R. Bernard, M. R. Ford, and J. R. Muir. Urinary excretion of tritium following exposure of man to HTO—a two exponential model.Phys. Med. Biol. 13:547–559, 1968.

    Article  PubMed  CAS  Google Scholar 

  52. Steele, R. Influences of glucose loading and of injected insulin on hepatic glucose output.Ann. N.Y. Acad. Sci. 82: 420–430, 1959.

    Article  PubMed  CAS  Google Scholar 

  53. Stephenson, J. L. Theory of the measurement of blood flow by the dilution of an indicator.Bull. Math. Biophys. 10:117–121, 1960.

    Article  Google Scholar 

  54. Stetten, D. W., Jr., I. D. Ingle, and E. H. Morley. Rates of glucose production and oxidation in normal and diabetic rats.J. Biol. Chem. 192:817–830, 1951.

    PubMed  CAS  Google Scholar 

  55. Stoelinga, G. B. A., and P. J. J. van Munster. The behaviour of Evans blue (a20 dye T. 1924) in the body after intravenous injection.Acta Physiol. Pharmacol. Neerl. 14:391–409, 1967.

    PubMed  CAS  Google Scholar 

  56. Tait, J. F., and S. Burstein. In vivo studies in steroid dynamics in man. In: The hormones, vol. 5, edited by G. Pincus, K. V. Thimann, and E. B. Astwood, London: Academic Press, 1964.

    Google Scholar 

  57. Thom, R. Structural Stability and Morphogenesis: An Outline of a General Theory of Models, Translated from the French by D. H. Fowler, p. 5. Redwood City, CA: Addison-Wesley, 1972, 348 pp

    Google Scholar 

  58. Threefoot, S. A., C. T. Ray, G. E. Burch, J. A. Cronvich, J. P., Milnor, W. Overman, and W. Gordon. Concentration-time course in the plasma of man of radiomercury introduced as a mercurial diuretic.J. Clin. Invest. 28:661–670, 1949.

    PubMed  CAS  Google Scholar 

  59. Waterhouse, C., and J. Keilson. Transfer times across the human body.Bull. Math. Biophys. 34:33–44, 1972.

    Article  PubMed  CAS  Google Scholar 

  60. Weiss, M., and W. Förster. Pharmacokinetic model based on circulatory transport.Eur. J. Clin. Pharmacol. 16:287–293, 1979.

    Article  Google Scholar 

  61. Weiss, M. Moments of physiological transit time distributions and the time course of drug disposition in the body.J. Math. Biol. 15:305–318, 1982.

    Article  PubMed  CAS  Google Scholar 

  62. Weiss, M. A note on the role of generalized inverse Gaussian distributions of circulatory transit times in pharmacokinetics.J. Math. Biol. 20:95–102, 1984.

    Article  PubMed  CAS  Google Scholar 

  63. Wiggins, A. D. A mathematical model relating, the power law to the exponential law in biological turnover studies.Math. Biosci. 10:191–200, 1971.

    Article  Google Scholar 

  64. Wise, M. E., S. B. Osborn, J. Anderson, and R. W. S. Tomlinson. A stochastic model for turnover of radiocalcium based on the observed power laws.Math. Biosci. 2:199–224, 1968.

    Article  CAS  Google Scholar 

  65. Wise, M. E., Skew probability curves with negative powers of time and related to random walks in series.Statist. Neerl. 25:159–170, 1971.

    Article  Google Scholar 

  66. Wise, M. E. Interpreting both short- and long-term power laws in physiological clearance curves.Math. Biosci. 20: 327–337, 1974.

    Article  Google Scholar 

  67. Wise, M. E., Skew distributions in biomedicine including some with negative powers of time. In. A modern course on statistical distributions in scientific work, vol. 2, edited by G. P. Patil, S. Kotz, and J. K. Ord. Dordrecht: Reidel, 1975, pp. 241–262.

    Google Scholar 

  68. Wise, M. E. The form and interpretation of clearance curves for injected radioisotopes based on negative power laws, including,47Ca and estimating bone accretion rate.Curr. Top. Radiat. Res. Q. 12:63–82, 1978.

    PubMed  CAS  Google Scholar 

  69. Wise, M. E. The need for rethinking on both compartments and modelling. In: Compartmental analysis of ecosystem models, edited by J. H. Matis, B. C. Patten, and G. C. White. Fairland, MD: International Co-operative Publishing House, 1979, pp. 279–293.

    Google Scholar 

  70. Wise, M. E., and G. J. J. M. Borsboom. Two exceptional sets of physiological clearance curves and their mathematical form: test cases?Bull. Math. Biol. 51:579–596, 1989.

    PubMed  CAS  Google Scholar 

  71. Zierler, K. L. Theory of the use of arteriovenous concentration differences for measuring metabolism in steady and non-steady states.J. Clin. Invest. 40:2111–2125, 1961.

    PubMed  CAS  Google Scholar 

  72. Zilversmit, D. B., C. Entenman, M. C. Fishler, and I. L. Chaikoff. The turnover rate of phospholipids in the plasma of the dog as measured with radioactive phosphorus.J. Gen. Physiol. 26:333–340, 1943.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norwich, K.H. Noncompartmental models of whole-body clearance of tracers: A review. Ann Biomed Eng 25, 421–439 (1997). https://doi.org/10.1007/BF02684184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684184

Keywords

Navigation