Skip to main content
Log in

Heterogeneity of intergranular damage in Copper Crept in Plane-Strain Tension

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

An interface damage function (IDF), which statistically describes the area fraction of interface damage as a function of up to eight parameters defining crystallite interfaces, was determined for commercial-purity copper specimens crept in plane-strain tension. The IDF was determined from stereological parameters measured on plane sections cut through damaged specimens. The eight-dimensional space of the function was investigated by analyzing two-dimensional projections of the complete domain. Certain “special” interfaces were observed to damage preferentially. A low planar density of atoms near crystallite interfaces apparently increased the propensity for the occurrence of damage. Other microstructural mechanisms contributing to the observed heterogeneous distribution of damage are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Dennison and B. Wilshire:J. Inst. Met., 1963, vol. 92, pp. 343–60.

    Google Scholar 

  2. W.J. Evans and B. Wilshire:Metall. Trans., 1970, vol. 1, pp. 2133–39.

    Article  CAS  Google Scholar 

  3. N.G. Needham, J.E. Wheatley, and G.W. Greenwood:Acta Metall., 1975, vol. 23, pp. 23–27.

    Article  CAS  Google Scholar 

  4. I.-W. Chen and A.S. Argon:Acta Metall., 1981, vol. 29, pp. 1321–33.

    Article  CAS  Google Scholar 

  5. B.F. Dyson, M.S. Loveday, and M.J. Rodgers:Proc. R. Soc. London A, 1976, vol. 349A, pp. 245–59.

    Google Scholar 

  6. D. Hull and D.E. Rimmer:Phil. Mag., 1959, vol. 4, pp. 673–87.

    Article  CAS  Google Scholar 

  7. M. V. Speight and J.E. Harris:Met. Sci., 1967, vol. 1, pp. 83–89.

    Article  CAS  Google Scholar 

  8. B.F. Dyson:Met. Sci., 1976, vol. 20, pp. 349–53.

    Article  Google Scholar 

  9. J.R. Rice:Acta Metall., 1981, vol. 29, pp. 675–81.

    Article  CAS  Google Scholar 

  10. J. Don and S. Majumdar:Acta Metall., 1986, vol. 34, pp. 961–67.

    Article  CAS  Google Scholar 

  11. T. Watanabe:Mater. Sci. Forum, 1989, vol. 46, pp. 25–48.

    Article  CAS  Google Scholar 

  12. J. Bonneville, D. Caillard, M. Carrard, and J.L. Martin:Rev. Phys. Appl., 1988, vol. 23, pp. 461–73.

    Article  CAS  Google Scholar 

  13. V. Vitek, A.P. Sutton, D.A. Smith, and R.C. Pond: inGrain Boundary Structure and Kinetics, ASM Materials Science Seminar, Milwaukee, WI, 1979, pp. 115–44.

    Google Scholar 

  14. B.L. Adams, J. Zhao, and D. O'Hara:Acta Metall. Mater., 1990, vol. 38, pp. 953–66.

    Article  Google Scholar 

  15. D.P. Field and B.L. Adams:Acta Metall. Mater., 1992, vol. 40, pp. 1145–57.

    Article  CAS  Google Scholar 

  16. R.H. Wagoner:Metall. Trans. A, 1980, vol. 11 A, pp. 165–75.

    Article  Google Scholar 

  17. B.L. Adams and D.P. Field: Metall. Trans. A, 1992, vol. 23A, pp. 2501–13.

    Article  Google Scholar 

  18. H.J. Bunge:Texture Analysis in Materials Science, Butterworth's, London, 1982, pp. 353–403.

    Google Scholar 

  19. B.L. Adams:Metall. Trans. A, 1986, vol. 17A, pp. 2199–2207.

    Article  CAS  Google Scholar 

  20. J. Zhao, J.S. Koontz, and B.L. Adams:Metall. Trans. A, 1988, vol. 19A, pp. 1179–85.

    Article  CAS  Google Scholar 

  21. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling:Numerical Recipes, Cambridge University Press, New York, NY, 1986, pp. 52–64.

    Google Scholar 

  22. G.H. Golub and C.F. Van Loan:Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1983, ch. 12.

    Google Scholar 

  23. J.A. Venables and C.J. Harland:Phil. Mag., 1973, vol. 27, pp. 1193–1200.

    Article  CAS  Google Scholar 

  24. D.J. Dingley and K. Baba-Kishi:Scanning Electron Microscopy, 1986, vol. II, pp. 383–91.

    Google Scholar 

  25. D.P. Field: Ph.D. Dissertation, Yale University, New Haven, CT, 1991, pp. 121–88.

    Google Scholar 

  26. D.C. Handscomb:Can. J. Math., 1958, vol. 10, pp. 85–88.

    Article  Google Scholar 

  27. J.K. Mackenzie:Biometrika, 1958, vol. 45, pp. 229–40.

    Article  Google Scholar 

  28. A. Rukwied:Metall. Trans., 1972, vol. 3, pp. 3009–23.

    Article  CAS  Google Scholar 

  29. M. McLean:J. Mater. Sci., 1973, vol. 8, pp. 571–76.

    Article  CAS  Google Scholar 

  30. J. Zhao and B.L. Adams:Acta Crystallogr., 1988, vol. A44, pp. 326–36.

    Article  CAS  Google Scholar 

  31. B.L. Adams, J. Zhao, and H. Grimmer:Acta Crystallogr., 1990, vol. A46, pp. 620–22.

    Article  CAS  Google Scholar 

  32. D.G. Brandon:Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  33. A.S. Argon: inRecent Advances in Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owens, eds., Pineridge Press, Swansea, United Kingdom, 1982, pp. 1–28.

    Google Scholar 

  34. R.W. Evans and B. Wilshire:Creep of Metals and Alloys, Pineridge Press, Swansea, United Kingdom, 1985, pp. 167–74.

    Google Scholar 

  35. M.F. Ashby, C. Gandhi, and D.M.R. Taplin:Acta Metall., 1979, vol. 27, pp. 699–729.

    Article  CAS  Google Scholar 

  36. H.J. Frost and M.F. Ashby:Deformation Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982.

    Google Scholar 

  37. F.R.N. Nabarro:Report of Conference on Strength of Solids, Physics Society of London, 1948, pp. 75–82.

  38. C. Herring:J. Appl. Phys., 1950, vol. 21, pp. 437–43.

    Article  Google Scholar 

  39. R.L. Coble:J. Appl. Phys., 1963, vol. 34, pp. 1679–82.

    Article  Google Scholar 

  40. A.C.F. Cocks and M.F. Ashby:Prog. Mater. Sci., 1982, vol. 27, pp. 189–244.

    Article  CAS  Google Scholar 

  41. B.L. Adams, G.R. Canova, and A. Molinari:Textures and Microstructures, 1989, vol. 11, pp. 57–71.

    Article  Google Scholar 

  42. B.L. Adams and D.P. Field:Acta Metall. Mater., 1991, vol. 39, pp. 2405–17.

    Article  CAS  Google Scholar 

  43. D.G. Brandon, B. Ralph, S. Ranganathan, and M.S. Wald: ActaMetall., 1964, vol. 12, pp. 813–21.

    Article  Google Scholar 

  44. R. Raj:Acta Metall., 1978, vol. 26, pp. 341–49.

    Article  CAS  Google Scholar 

  45. J.D. Livingston and B. Chalmers:Acta Metall., 1957, vol. 5, pp. 322–27.

    Article  CAS  Google Scholar 

  46. Z. Shen, R.H. Wagoner, and W.A.T. Clark:Acta Metall., 1988, vol. 36, pp. 3231–42.

    Article  CAS  Google Scholar 

  47. E. Werner and W. Prantl:Acta Metall. Mater., 1990, vol. 38, pp. 533–37.

    Article  CAS  Google Scholar 

  48. D.J. Dingley and R.C. Pond:Acta Metall., 1979, vol. 27, pp. 667–82.

    Article  CAS  Google Scholar 

  49. T.C. Lee, I.M. Robertson, and H.K. Birnbaum:Metall. Trans. A, 1990, vol. 21A, pp. 2437–47.

    Article  CAS  Google Scholar 

  50. S.P. Lynch:Mater. Sci. Forum, 1989, vol. 46, pp. 1–24.

    Article  CAS  Google Scholar 

  51. E.D. Hondros and P.J. Henderson:Metall. Trans. A, 1983, vol. 14A, pp. 521–30.

    Article  Google Scholar 

  52. K.E. Sickafus and S.L. Sass:Acta Metall., 1987, vol. 35, pp. 69–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

formerly Graduate Student, Yale University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, D.P., Adams, B.L. Heterogeneity of intergranular damage in Copper Crept in Plane-Strain Tension. Metall Trans A 23, 2515–2526 (1992). https://doi.org/10.1007/BF02658055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658055

Keywords

Navigation