Skip to main content
Log in

High temperature creep cavitation mechanisms in a continuously cast high purity copper

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Continuously cast high purity copper was used to study intergranular high temperature creep fracture mechanisms. With the help of an internal marker system due to impurity segregation, grain boundary sliding, GBS, was found to have occurred to a similar extent on cavitated and uncavitated boundaries. To explain this phenomenon a void nucleation model involving small nonwetting shearable particles is suggested. Metallographic observations and the apparent activation energy derived from fracture time data indicate the operation of the vacancy condensation mechanism at the lower temperatures and higher stresses. At the higher temperatures and lower stresses void growth is enhanced by GBS. This cavitation mechanism obtains strong support from measurements of the distribution of voids on grain boundaries as a function of the boundary angle with respect to the tensile direction. Computer analysis of these distributions, in terms of a model which properly accounts for the distribution of potential nuclei, yields bimodal curves exhibiting peaks at grain boundaries oriented for high shear stress (peak I), and for high normal stress (peak II). A phenomenological equation is proposed for the dependence of peak I on test conditions. Peak II is thought to be caused by nucleation by local GBS and growth by vacancy condensation under locally enhanced normal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Greenwood, D. R. Miller, and J. W. Suiter:ActaMet., 1954, vol. 2, p. 250.

    CAS  Google Scholar 

  2. A.H. Cottrell:Fracture, B. Averbachet ai, eds., p. 20, Wiley and Technology Press, New York, 1959.

    Google Scholar 

  3. R.C. Gifkins:Acta Met., 1956, vol. 4, p. 98.

    Article  Google Scholar 

  4. E.S. Machlin:AIME Trans., 1956, vol. 206, p. 106.

    Google Scholar 

  5. C. W. Chen and E. S. Machlin:Acta Met., 1956, vol. 4, p. 655.

    Article  Google Scholar 

  6. D. McLean:J. Aust. Inst. Metals, 1963, vol. 8, p. 45.

    Google Scholar 

  7. J. O. Stiegler, K. Farrell, B. T. M. Loh, and H. E. McCoy:Trans. ASM, 1967, vol. 60, p.494.

    CAS  Google Scholar 

  8. A. E. B. Presland and R. I. Hutchinson:5th Inter. Conf. for Electron Micro-scopy, p. 432, Academic Press, 1962.

  9. C.F. Tipper:Metallurgia, 1948-49, vol. 39, p. 133.

    Google Scholar 

  10. R. Resnick and L. L. Seigle:AIME Trans., 1957, vol. 209, p. 87.

    Google Scholar 

  11. K.E. Puttig:Phil. Mag., 1959, vol. 4, p. 964.

    Article  Google Scholar 

  12. R. W. Balluffi and L. L. Seigle:Acta Met., 1957, vol. 5, p. 449.

    Article  CAS  Google Scholar 

  13. D. Hull and D. E. Rimmer:Phil. Mag., 1959, vol. 4, p. 673.

    Article  Google Scholar 

  14. V. Speight and J.E. Harris:Met. Sci. J., 1967, vol. l,p. 83.

    Google Scholar 

  15. G.W. Greenwood:Phil. Mag., 1963, vol. 8, p. 707.

    Article  Google Scholar 

  16. G.W. Greenwood:Phil. Mag., 1969, vol. 19, p. 423.

    Article  Google Scholar 

  17. Y. Ishida and D. McLean:Met. Sci. J., 1967, vol. 1, p. 171.

    Article  Google Scholar 

  18. D. McLean:Phil. Mag., 1971, vol. 23, p. 467.

    Article  CAS  Google Scholar 

  19. G.W. Greenwood:Proceedings of a Conference on Interfaces, R. C. Gifkins, ed., p. 223, Butterworths, Melbourne, Australia, 1969.

    Google Scholar 

  20. D. A. Woodford and R. M. Goldhoff:Mater. Sci. Eng., 1969-70, vol. 5, p. 303.

    Article  Google Scholar 

  21. N.J. Grant:Fracture, H. Liebowitz, ed., vol. III, p. 483, Academic Press, New York and London, 1971.

    Google Scholar 

  22. P. W. Davies and B. Wilshire:J. Inst. Metals, 1961-62, vol. 90, p. 470.

    Google Scholar 

  23. R. A. Scriven and H. D. Williams:Trans. TMS-AIME, 1965, vol. 233, p. 1593.

    CAS  Google Scholar 

  24. P. W. Davies, K. R. Williams, and B. Wilshire:Phil. Mag., 1968, vol. 18, p. 197.

    Article  Google Scholar 

  25. P. W. Davies and K. R. Williams: Met. Sci. J., 1969, vol. 3, p. 220.

    Google Scholar 

  26. A. Gittins and H. D. Williams:Phil. Mag., 1967, vol. 16, p. 849.

    Article  CAS  Google Scholar 

  27. A. Gittins and J.A. Williams:ScriptaMet., 1969, vol. 3, p. 209.

    Article  CAS  Google Scholar 

  28. D.M. R. Taplin:Phil. Mag, 1969, vol. 20, p. 1079.

    Article  CAS  Google Scholar 

  29. B. Wilshire:ScriptaMet, 1970, vol. 4, p. 361.

    Article  CAS  Google Scholar 

  30. A. Rukwied and D. B. Ballard:Met. Trans., 1972, vol. 3, pp. 2999–3008.

    Article  CAS  Google Scholar 

  31. A. Rukwied, A. W. Ruff, and W. A. Willard:Met. Trans., 1971, vol. 2, p. 2105.

    Article  CAS  Google Scholar 

  32. A. Rukwied and W. A. Willard: National Bureau of Standards, Washington, D. C, unpublished research, 1971.

  33. T. R. Ratcliffe and G. W. Greenwood:Phil. Mag., 1965, vol. 12, p. 59.

    Article  CAS  Google Scholar 

  34. G. Richardson, E. Schnabel, and H.-P. Stüwe:Metall, 1969, vol. 23, p. 11390.

    CAS  Google Scholar 

  35. R. C. Boettner and W. D. Robertson:Trans. TMS-AIME, 1961, vol. 221, p. 613.

    CAS  Google Scholar 

  36. J. E. Harris:Trans. TMS-AIME, 1965, vol. 233, p. 1509.

    CAS  Google Scholar 

  37. Y. Ishida and M. Henderson Brown:Acta Met, 1967, vol. 15, p. 857.

    Article  CAS  Google Scholar 

  38. H. Gleiter, E. Hornbogen, and G. Bäro:Acta Met, 1968, vol. 16, p. 1053.

    Article  CAS  Google Scholar 

  39. G. Bäro, H. Gleiter, and E. Hornbogen:Mater. Sci. Eng, 1968-69, vol. 3, p. 92.

    Article  Google Scholar 

  40. E.D. Hondros:Proc. of a Conf. on Interfaces, R. C. Gifkins, ed., p. 77, Butter-worths, Melbourne, Australia, 1969.

    Google Scholar 

  41. E. Orowan:Proc. Roy. Soc. Lond., 1970, vol. A316, p. 473.

    Article  Google Scholar 

  42. H. R. Tipler and D. McLean:Met. Sci. J., 1970, vol. 4, p. 103.

    Article  CAS  Google Scholar 

  43. R. C. Gifkins and K. U. Snowden:Trans. TMS-AME, 1967, vol. 239, p. 910.

    CAS  Google Scholar 

  44. R. C. Gifkins, A. Gittins, R. L. Bell, and T. G. Langdon:J. Mater. Sci., 1968, vol. 3, p. 306.

    Article  CAS  Google Scholar 

  45. R.M. N. Pelloux:Trans. ASM, 1964, vol. 57, p. 511.

    CAS  Google Scholar 

  46. H. C. Chang and N. F. Grant:AIME Trans., 1956, vol. 206, pp. 544,1241.

    Google Scholar 

  47. R. N.Stevens:Met. Rev., 1966, vol. 11, p. 129.

    Article  Google Scholar 

  48. P. R. Strutt, A. M. Lewis, and R. C. Gifkins:J. Inst. Metals, 1964-65, vol. 93, p.71.

    CAS  Google Scholar 

  49. R. L. Bell and T. G. Langdon:J. Mater. Sci., 1967, vol. 2, p. 313.

    Article  CAS  Google Scholar 

  50. A. Gittins and R. C. Gifkins:J. Aust. Inst. Metals, 1969, vol. 14, p. 177.

    CAS  Google Scholar 

  51. F. GarofaloFundamentals of Creep and Creep Rupture in Metals, The Mac-Millan Co., New York, 1965.

  52. R. W. Cahn:XI e Colloque de Metallurge, p. 55, Saclay, France, 1968.

  53. C. R. Barrett and O. D. Sherby:Trans. TMS-AIME, 1964, vol. 230, p. 1322.

    Google Scholar 

  54. R. Raj and M. F. Ashby:Met. Trans., 1971,vol. 2, p. 1113.

    Article  Google Scholar 

  55. M. F. Ashby, R. Raj, and R. C. Gifkins:Scripta Met., 1970, vol. 4, p. 737.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A. RUKWIED, formerly Physicist, Engineering Metallurgy Section, Metallurgy Division, National Bureau of Standards, U. S. Department of Commerce, Washington, D. C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rukwied, A. High temperature creep cavitation mechanisms in a continuously cast high purity copper. Metall Trans 3, 3009–3023 (1972). https://doi.org/10.1007/BF02652874

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652874

Keywords

Navigation