Skip to main content
Log in

Role of grain boundary segregation in diffusional creep

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The high temperature deformation of polycrystalline materials by the stress directed flow of vacancies is now a well established creep mechanism which operates in two temperature regimes: high temperature, or Nabarro-Herring creep, in which lattice diffusion is rate determining, and low temperature, or Coble creep, in which grain boundary diffusion predominates. Basic studies have been conducted mostly with pure metals for which there exists in general a good correspondence between predicted and observed behavior. Multicomponent engineering alloys will normally experience, as part of their processing history or service lives, the segregation enrichment of interfaces such as grain boundaries by species present in solid solution. The aim of this paper is to evaluate the experimental information and to explore the manner in which this segregation affects the principal forms of diffusional creep. Cases of retarded Herring-Nabarro creep are analyzed in terms of the efficacy of grain boundaries as sources and sinks for vacancies: strongly bound segregant atoms at grain boundaries affect the mobility of defects and hence control the operation of vacancy sources. Recently, observations have been made on the effect of strongly segregating solutes on grain boundary diffusivity. Such behavior influences Coble creep rates, producing in general a retardation. Here we assess the magnitude of the effect induced by various surface active species on grain boundary diffusivity and consequently on Coble creep; predictions show that in general, small amounts of highly surface active impurities induce a remarkable inhibition of this form of creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. R. N. Nabarro:Report of Conference on Strength of Solids, Phys. Soc. London, 1948, p. 75.

  2. C. Heiring:J. of Appl. Physics, 1950, vol. 21, p. 437.

    Article  Google Scholar 

  3. B. Burton:Diffusional Creep of Polycrystalline Materials, Diffusion and Defect Monograph Series, Trans. Tech. SA, Aedermannsdorf, Switzerland, 1977, vol. 5.

    Google Scholar 

  4. F. H. Buttner, E. R. Funk, and H. Udin:Trans. AIME, 1952, vol. 194, p. 401.

    Google Scholar 

  5. E. D. Hondros and D. Gladman:Surface Sci., 1968, vol. 9, p. 471.

    Article  CAS  Google Scholar 

  6. H. Jones and G. M. Leak:Acta Met., 1966, vol. 14, p. 21.

    Article  CAS  Google Scholar 

  7. H. Udin, A.J. Shaler, and J. Wulff:Trans. AIME, 1949, vol. 185, p. 186.

    Google Scholar 

  8. E. R. Haywood and A. P. Greenough:J. Inst. Metals, 1959-60, vol. 88, p. 217.

    Google Scholar 

  9. H. Jones:Mat. Sci. and Eng., 1969, vol. 4, p. 106.

    Article  CAS  Google Scholar 

  10. R.L. Coble:J. Appl. Phys., 1963, vol. 34, p. 1679.

    Article  Google Scholar 

  11. R.B. Jones:Nature, 1965, vol. 207, p. 70.

    Article  CAS  Google Scholar 

  12. M.F. Ashby:Acta Met., 1972, vol. 20, p. 887.

    Article  CAS  Google Scholar 

  13. E. D. Hondros and M. P. Sean:Int. Met. Rev., 1977, vol. 222, p. 262.

    Google Scholar 

  14. B. Burton and W.B. Beare:Met. Sci., 1978, vol. 12, p. 71.

    CAS  Google Scholar 

  15. E. D. Hondros:Proc. Conf. on The Physical Metallurgy of Reactor Fuel Elements, Metals Society, London, 1975, p. 79.

    Google Scholar 

  16. E.D. Hondros:Phys. Stat. Sol., 1967, vol. 21, p. 375.

    CAS  Google Scholar 

  17. E. D. Hondros and L. E. H. Stuart:Phil. Mag., 1968, vol. 17, p. 711.

    CAS  Google Scholar 

  18. E.D. Hondros and C.R. Lake:J. Mat. Sci., 1970, vol. 5, p. 374.

    Article  CAS  Google Scholar 

  19. B. Burton and G. W. Greenwood:Acta Met., 1970, vol. 18, p. 1237.

    Article  CAS  Google Scholar 

  20. B. Burton and B. D. Bastow:Acta Met., 1973, vol. 21, p. 13.

    Article  CAS  Google Scholar 

  21. M.F. Ashby:Scripta Met., 1969, vol. 3, p. 837.

    Article  CAS  Google Scholar 

  22. I.M. Bernstein:Trans. TMS-AIME, 1967, vol. 239, p. 1518.

    CAS  Google Scholar 

  23. T. Sritharan and H. Jones:Metal. Sci., 1981, vol. 15, p. 365.

    Article  CAS  Google Scholar 

  24. I.G. Crossland, B. Burton, and B.D. Bastow:Met. Sci., 1975, vol. 9, p. 327.

    Article  CAS  Google Scholar 

  25. M.R. Das and T. B. Gibbons:Scripta Met., 1976, vol. 10, p. 231.

    Article  CAS  Google Scholar 

  26. P. Nanni, C. T. H. Stoddart, and E. D. Hondros:Mater. Chem., 1976, vol. 1, p. 297.

    Article  CAS  Google Scholar 

  27. D.L. Johnson and I.B. Cutler:J. Am. Ceram. Soc, 1963, vol. 46, p. 541.

    Article  CAS  Google Scholar 

  28. V.T. Borisov, V.M. Golikov, and G.V. Scherbedinskiy:Physics Metals Metallogr., 1964, vol. 17, p. 80.

    Google Scholar 

  29. J. Bernardini, P. Gas, E. D. Hondros, and M. P. Sean:Proc. Roy. Soc, 1982, vol. A379, p. 159.

    Google Scholar 

  30. B. Burton, I. G. Crossland, and G. W. Greenwood:Metals Sci., 1980, vol. 14, p. 134.

    CAS  Google Scholar 

  31. A. D. Le Claire:J. Nuc. Mat., 1978, vol. 69–70, p. 70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the symposium “The Role of Trace Elements and Interfaces in Creep Failure” held at the annual meeting of The Metallurgical Society of AIME, Dallas, Texas, February 14-18, 1982, under the sponsorship of The Mechanical Metallurgy Committee of TMS-AIME.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hondros, E.D., Henderson, P.J. Role of grain boundary segregation in diffusional creep. Metall Trans A 14, 521–530 (1983). https://doi.org/10.1007/BF02643770

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643770

Keywords

Navigation